
1.5 — Optimize Workflow
ECON 480 • Econometrics • Fall 2021
Ryan Safner

Assistant Professor of Economics 

 safner@hood.edu 

 ryansafner/metricsF21
metricsF21.classes.ryansafner.com


mailto:safner@hood.edu
https://github.com/ryansafner/metricsF21
https://metricsf21.classes.ryansafner.com/


The Office Model

The Plain Text Model

R Markdown

Compiling Your Documents

R Projects

Version Control

Resources



1. Writing text/documents

2. Managing citations and bibliographies

3. Performing data analysis

4. Making figures and tables

5. Saving files for future use

6. Monitoring changes in documents

7. Collaborating and sharing with others

8. Combining into a deliverable (report, paper,
presentation, etc.)

Your Workflow Has a Lot of Moving Parts



The Office Model



1. Writing text/documents

2. Managing citations and bibliographies

3. Performing data analysis

4. Making figures and tables

5. Saving files for future use

6. Monitoring changes in documents

7. Collaborating and sharing with others

8. Combining into a deliverable (report, paper,
presentation, etc.)

The Office Model I



A lot of copy-pasting

A lot of...

The Office Model II



The Office Model: A Short Horror Movie

a reproducible workflowa reproducible workflow

https://www.youtube.com/watch?v=s3JldKoA0zw


Source: Science Magazine Source: Bloomberg

The Office Model: Mistakes

https://www.sciencemag.org/news/2016/08/one-five-genetics-papers-contains-errors-thanks-microsoft-excel
https://www.bloomberg.com/news/articles/2013-04-18/faq-reinhart-rogoff-and-the-excel-error-that-changed-history


The Office Model: Not Reproducible

Kaitlin Thaney  (she/her)
@kaythaney

"'Reproducible research' is a redundant term.
'Irreproducible research' just used to be known as
'bullshit'." - @fperez_org  ::slow clap::
7:11 PM · May 8, 2014

58 4 Copy link to Tweet

Tweet your reply

https://twitter.com/kaythaney?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E464543147083968513%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fmetricsf21.classes.ryansafner.com%2Fslides%2F1.5-slides.html
https://twitter.com/kaythaney?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E464543147083968513%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fmetricsf21.classes.ryansafner.com%2Fslides%2F1.5-slides.html
https://twitter.com/kaythaney/status/464543147083968513?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E464543147083968513%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fmetricsf21.classes.ryansafner.com%2Fslides%2F1.5-slides.html
https://twitter.com/fperez_org?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E464543147083968513%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fmetricsf21.classes.ryansafner.com%2Fslides%2F1.5-slides.html
https://twitter.com/kaythaney/status/464543147083968513?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E464543147083968513%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fmetricsf21.classes.ryansafner.com%2Fslides%2F1.5-slides.html
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E464543147083968513%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fmetricsf21.classes.ryansafner.com%2Fslides%2F1.5-slides.html&tweet_id=464543147083968513
https://twitter.com/kaythaney/status/464543147083968513?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E464543147083968513%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fmetricsf21.classes.ryansafner.com%2Fslides%2F1.5-slides.html
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E464543147083968513%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fmetricsf21.classes.ryansafner.com%2Fslides%2F1.5-slides.html&in_reply_to=464543147083968513


...The Rest of the Owl



This is how I make my...

Research papers
Course documents
Websites
Slides and presentations

I have not used any MS Office products since
2011 (good riddance!)

This stuff is optional

If you like your office model, you can keep it
But this is what most people who take this
course continue to use (R is only really if you
have data work)

What I'm About to Show You



The Plain Text Model



Meet R Markdown , which can do all of
this in one pipeline

1. Writing text/documents
2. Managing citations and bibliographies
3. Performing data analysis
4. Making figures and tables
5. Saving files for future use
6. Monitoring changes in documents
7. Collaborating and sharing with others
8. Combining into a deliverable (report, paper,

presentation, etc.)

From R Studio's R Markdown Cheatsheet

The Plain Text Model I

https://www.rstudio.com/wp-content/uploads/2016/03/rmarkdown-cheatsheet-2.0.pdf


Plain text files: readable by both
machines and humans

Understand how a document is
structured and formatted via code
and markup to text

Focus entirely on the actual writing of the
content instead of the formatting and
aesthetics

You can still customize, but with
precise commands instead of point,
click, drag, guess, pray

The Plain Text Model II



Open Source: free, useable forever, often
very small file size

Proprietary software is a gamble - can
you still open a .doc  file from
Microsoft Word 1997?

Automate and Minimize Errors, especially
in repetitive processes

Can be used with version control (see
below)

The Plain Text Model III



Making Your Work Reproducible
One day you will need to quit R, go do something else and return to your analysis the
next day. One day you will be working on multiple analyses simultaneously that all
use R and you want to keep them separate. One day you will need to bring data from
the outside world into R and send numerical results and figures from R back out into
the world. To handle these real life situations, you need to make two decisions:
What
about your analysis is "real", i.e. what will you save as your lasting record of what
happened?
Where does your analysis "live"?

Hadley Wickham, R For Data Science

We've talked about .R  script files that let you "keep" commands

What about output? Must you save and copy/paste to MS Word? No!

http://r4ds.had.co.nz/workflow-projects.html


R Markdown  file (.Rmd ) is the "real"
part of your analysis, everything can live
in this plain-text file!

Document text in markdown

R code  executed in "chunks"

Plots and tables generated from R
code

Citations and bibliography automated
with .bib  file

Making Your Work Reproducible



Source: The Atlantic Source: Paul Romer (2018 Economics Nobel)

The Future of Science is Open Source Plain Text

https://www.theatlantic.com/science/archive/2018/04/the-scientific-paper-is-obsolete/556676/
https://paulromer.net/jupyter-mathematica-and-the-future-of-the-research-paper/


R Markdown



File -> New File -> R
Markdown...

Outputs:
Document (what you'll use for most
things)
Presentation (for making slides in
various formats)
Shiny (an html and R based web app,
advanced)
Templates (some built-in, other
packages like rticles  or
xaringan  add neat templates)

Creating an R Markdown Document I



File -> New File -> R Markdown...

html : renders a webpage, viewable in any
browser

default, easiest to produce and share
can have interactive elements (gifs,
animations, web apps)
requires internet connection to host and
share (you can view offline)

pdf : renders a PDF document
most common document format around
requires LaTeX  distribution to render
(more on that soon)

word : create a Micosoft Word document
...if you must

Creating an R Markdown Document II



Entire document is written in a single file:

1. YAML  header for metadata

2. Text of the document written with
markdown

3. R  chunks for data analysis, plots, figures,
tables, statistics, as necessary

Structure of an R Markdown Document

1 with

three types of content:

 The one exception is for managing bibliographies, this requires one additional .bib  file!1



YAML Header I
Top of a document contains the YAML  separated by three dashes ---  above and below

Contains the metadata of the document, such as:

title: "My Title"
author: "Ryan Safner"
date: "`r Sys.Date()`" # here I'm using R code to generate today's date!
output: pdf_document

output  must be specified, everything else can be left blank, and other options can be
added as necessary

In most cases, you can safely ignore other things in the yaml  until you are ready

1

 YAML stands for "YAML Ain't Markup Language." Nerds love recursive acronyms.1



YAML Header: Example from one of my research papers
title: Distributing Patronage^[I would like to thank the Board of Associates of Hood College...]
subtitle: Intellectual Property in the Transition from Natural State to Open Access Order
date: \today
author: 
- Ryan Safner^[Hood College, Department of Economics and Business Administration; safner@hood.edu]

abstract: |
  | "This paper explores the emergence of the modern forms of copyright and patent in ...
  | *JEL Classification:* O30, O43, N43
  | *Keywords:* Copyright, intellectual property, economic history, freedom of the press, economic development

bibliography: patronage.bib
geometry: margin = 1in
fontsize: 12pt
mainfont: Fira Sans Condensed
output: 
  pdf_document:
    latex_engine: xelatex
    number_sections: true
    fig_caption: yes

header-includes:
    - \usepackage{booktabs}



Input

```{r}
2+2 # code goes here!
```

Output

2+2 # code goes here!

## [1] 4

R Chunks I
You can create a "chunk" of R  code with three backticks  above and below your code
After the first pair of backticks, signify the language of the code  inside braces, e.g:

1

2

 The key to the left of the #1 key on your keyboard.

 Yes that does mean you can use other coding languages!

1

2



Input

```{r}
head(mpg, n=2)
```

Output

head(mpg, n=2)

## # A tibble: 2 × 11
##   manufacturer model displ  year   cyl trans      
##   <chr>        <chr> <dbl> <int> <int> <chr>      
## 1 audi         a4      1.8  1999     4 auto(l5)   
## 2 audi         a4      1.8  1999     4 manual(m5) 

R Chunks II



Input

```{r}
library("ggplot2") # load ggplot2
ggplot(data = mpg)+
  aes(x = displ)+
  geom_histogram()
```

Output

library("ggplot2") # load ggplot2
ggplot(data = mpg)+
  aes(x = displ)+
  geom_histogram()

R Chunks III



You can add additional options inside the {braces}
after r , some common options:

Name: you can name your chunk for further reference later
(not required)

This is the only option that goes after r  but before a
comma

echo

set =TRUE  to display the R  code input
set =FALSE  shows will not show your code

eval

set =TRUE  to run your code
=FALSE  only displays your code without running it

fig  has a lot of options for displaying plot outputs
( fig.height , fig.width , fig.asp , etc)

```{r my_cool_chunk, echo=F, warning = F}
```

R Chunks Options

1

https://yihui.name/knitr/options/


Input

```{r check-data, echo = T}
# get top 3 avg displacement by manuf
mpg %>% 
  group_by(manufacturer) %>% 
  summarize(avg = mean(displ)) %>%
  arrange(desc(avg)) %>%
  slice(1:3)
```

```{r make-plot, echo = F, fig.height=2}
ggplot(data = mpg)+
  aes(x = displ)+
  geom_histogram()
```

Output

# get top 3 avg engine displacement by manuf
mpg %>% 
  group_by(manufacturer) %>% 
  summarize(avg = mean(displ)) %>%
  arrange(desc(avg)) %>%
  slice(1:3)

## # A tibble: 3 × 2
##   manufacturer   avg
##   <chr>        <dbl>
## 1 lincoln       5.4 
## 2 chevrolet     5.06
## 3 jeep          4.58

R Chunks Options Example



If you want to be fancy, you can set global
options that affect all chunks

Use a special named setup  chunk at top
(comes in default .Rmd  template)

set global options inside the
knitr::opts_chunk$set()
command

Example on right is what I commonly use in my
slides:

hide all code by default
hide all messages & warnings
make figure resolution 3

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE,
                      message = FALSE,
                      warning = FALSE,
                      fig.retina = 3)
```

R Chunks Options: Set Defaults



Input

pi is equal to `r pi` .

Output

pi is equal to 3.1415927.

R Inline Code I
If you just want to display some code (or at least format it like code) in the middle of a sentence,
place between a single backtick on either side. If I mention tidyverse  or gapminder , it
formats the text as in-line code .

To actually execute R  code to output something in the middle of a sentence, put r  as the first
character inside the backticks, and then run the actual code such as pi is equal to 3.1415927.



Input

The average GDP per capita is `r gapminder %>%
mean(gdpPercap) %>% round(2)` with a standard
deviation of `r
round(sd(gapminder$gdpPercap),2)` .

Output

The average GDP per capita is $7215.33 with a standard deviation
of $9857.45.

R Inline Code II



Markdown is a lightweight markup
language geared towards HTML (i.e. the
internet)

Markup languages used to add
commands about how to display plain
text

Very simple and intuitive
Write normal text as usual in any word
processor
Change font styling with tags (asterisks):

*italics text*  creates italics text
**bold text**  creates bold text

Writing Text with Markdown

https://en.wikipedia.org/wiki/Markdown
https://en.wikipedia.org/wiki/Markup_language


Input

- item 1
- item 2
  - item 2a
- item 3

Output

item 1
item 2

item 2a
item 3

Writing Text with Markdown: Lists
Create an unordered list with lines of (- or + or * ), e.g.:

Markdown is great for taking notes quickly!



Writing Text with Markdown: Headings & Comments

Markdown Output

# Heading 1 Heading 1

## Heading 2 Heading 2

### Heading 3
Heading 3

Comment your code (will not print in output) with <!-- Unprinted comments here -->  (this comes
from html)



Input

| Header 1 | Header 2 | 
|----------|----------|
| Cell 1   | Cell 2   |
| Cell 3   | Cell 4   |

Output

Header 1 Header 2

Cell 1 Cell 2

Cell 3 Cell 4

Writing Text with Markdown: Tables

For more complicated tables, there are other packages and techniques
LaTeX (pdf only)
kableExtra  package
huxtable  package (for regression tables)
gt  package



Input

$$
\hat{\beta_1}=\frac{\displaystyle
\sum_{i=1}^n (X_i-\bar{X})(Y_i-
\bar{Y})}{\displaystyle \sum_{i=1}^n
(X_i-\bar{X})^2}  $$

Output

Writing Math I
Add beautifully-formatted math with the $  tag before and after the math, two $$  before/after
for a centered equation

In-line math example: $1^2=\frac{\sqrt{16}}{4}$  produces 

Centered-equation example:

=1
2 16√

4

=β1
^

( − )( − )∑
i=1

n

Xi X̄ Yi Ȳ

( −∑
i=1

n

Xi X̄)2



Writing Math II
Math uses a (much older) language called LaTeX, used by mathematicians, economists, and
others to write papers and slides with perfect math and formatting

I used to use for everything before I found R  and markdown
Producing pdf  or html  output actually converts markdown  files into  first! (See
the process described below)
Much steeper learning curve, a good cheatsheet
An extensive library of mathematical symbols, notation, formats, and ligatures, e.g.

T XE

http://en.wikipedia.org/wiki/LaTeX
https://wch.github.io/latexsheet/latexsheet.pdf


Writing Math III
Input Output

$\alpha$

$\pi$

$\frac{1}{2}$

$\hat{x}$

$\bar{y}$

$x_{1,2}$

x^{a-1}$

$\lim_{x \to \infty}$

$A=\begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ \end{bmatrix}$

A great resource: Wikibooks LaTeX Mathematics chapter

α

π

1

2

x ̂ 

ȳ

x1,2

xa−1

lim
x→∞

A = [ ]
a1,1

a2,1

a1,2

a2,2

https://en.wikibooks.org/wiki/LaTeX/Mathematics


Citations, References, and Bibliography
Manage your citations and bibliography automatically with .bib  files
First create a .bib  file to list all of your references in

You can do this in R  via: File -> New File -> Text File  (and save with
.bib  at the end)
See examplebib.bib  in this repository used in this document
At the top of your YAML  header in the main document, add bibliography:
examplebib.bib  so R  knows to pull references from this file
For each reference, add information to a .bib  file, like so:



@article{safner2016,
  author = {Ryan Safner},
  year = {2016},
  journal = {Journal of Institutional Economics},
  title = {Institutional Entrepreneurship, Wikipedia, 
           and the Opportunity of the Commons},
  volume = {12},
  number = {4},
  pages = {743-771}
}

A .bib  file is a plain text file with entries like
this

Classes for @article , @book ,
@collectedwork , @unpublished , etc.

Each will have different keys needed (e.g.
editor , publisher , address )

First input after the @article  is your citation
key (e.g. safner2016 )

Whenever you want to cite this article, you'll
invoke this key

An Example .bib File



An Example .bib File
Whenever you want to cite a work in your text, call up the citation key with @ , like so:
@safner2016[] , which produces (Safner, 2016)

You can customize citations, e.g.:

Write Produces

[@Safner2016] (Safner, 2016)

@Safner2016 Safner 2016

-@Safner2016 (2016)

@Safner2016[p. 743-744] (Safner, 2016, p.743-744)

BibTeX will automatically collect all works cited at the end and produce a bibliography
according to a style you can choose



Reference Management Software
For more information and examples, see R Studio's R Markdown Guide on Bibliographies
Lot of programs can help you manage references and export complete .bib  files to use
with R Markdown

Mendeley and Zotero are free and cross-platform
I use Papers (Paid and Mac only)
Simplest program (what I use) that makes .bib  files is Bibdesk

https://rmarkdown.rstudio.com/authoring_bibliographies_and_citations.html
https://www.mendeley.com/
https://www.zotero.org/
https://www.readcube.com/papers/
https://bibdesk.sourceforge.io/


Plain-Text Editors
Markdown files are plain text files and can be edited in any text editor

something as basic (and boring!) as "Notepad," for example
many good text editors out there, I like Typora or Ulysses (Mac only) for writing (and previewing)
Markdown in a simple interface, with no distractions

Any good editor will have syntax highlighting and coloring when you use tags (like bold, italic, code , and
code #comments ).

https://en.wikipedia.org/wiki/Plain_text
https://en.wikipedia.org/wiki/Text_editor
https://www.typora.io/
https://ulysses.app/


R Studio is My Text Editor of Choice
Honestly, I write everything in R Studio's text editor

Syntax highlighting
Actually can run R code, autocomplete, etc
Can render the markdown to an output format: html, pdf, etc.

You can write R code in other text editors, but you can't execute them outside of R Studio (or
the command line, but that's too advanced.) Same with actually rendering your markdown to
an output (pdf, html, etc)



Tips with Markdown
Empty space is very important in markdown

Lines that begin with a space may not render properly

Math that contains spaces between the dollar-signs may not render properly

Moving from one type of content to another (e.g. a heading to a list to text to an equation to
text) requires blank lines between them to work

Here is a great general tutorial on markdown syntax

https://www.markdowntutorial.com/


Compiling Your Documents



When you are ready, you "compile" your
markdown and code into an output format
using:

knitr , an R package that "knit s" your R
code and markdown .Rmd  into a .md  file for:

pandoc is a "swiss-army knife" utility that can
convert between dozens of document types

All you need to do is click the Knit  button at
the top of the text editor!

knitr

1

 knitr  also relies on the rmarkdown  package, which will probably be installed when you first knit.1

https://yihui.name/knitr/
http://pandoc.org/


R Projects



R Projects I
A R Project  is a way of systematically organizing your R  history, working directory, and
related files in a single package
Can easily be sent to others who can reproduce your work easily
Connects well with version control software like GitHub
Can open multiple projects in multiple windows



R Projects II
Projects solve all of the following problems:
1. Organizing your files (data, plots, text, citations, etc)
2. Having an accessible working directory (for loading and saving data, plots, etc)
3. Saving and reloading your commands history and preferences
4. Sending files to collaborators, so they have the same working directory as you



Creating a Project I



In almost all cases, you simply want a
New Project

For more advanced uses, your project can
be an R Package  or a Shiny Web
Application

If you have other packages that create
templates installed (as I do, in the
previous image), they will also show up
as options

Creating a Project II



Enter a name for the project in the top field

Also creates a folder on your computer with
the name you enter into the field

Choose the location of the folder on your
computer

Depending on if you have other packages or
utilities installed (such as git , see below!),
there may be additional options, do not check
them unless you know what you are doing

Bottom left checkbox allows you to open a new
instance (window) of R  just for this project (and
keep existing windows open)

Creating a Project III



Switch between each project (Window)
on your computer (this is on a Mac).

At top right corner of RStudio
Click the button to the right of the name to open in a new window!

Projects



Loading Others' Projects

This project is on GitHub, click the green button, download to your computer, open .Rproj  file in R Studio

http://github.com/ryansafner/workflow


Look through this on your own
Read the README  of this repository on
GitHub for instructions (automatically
shows on the main page)
Look at the Example_paper.Rmd

Uses data from Data folder
Uses .R  scripts from Scripts folder
Uses figures from Figures folder
Uses bibexample.bib  from
Bibliography folder

A Good File Structure



Version Control



Have You Done This?

PhD Comics

http://phdcomics.com/comics/archive_print.php?comicid=1531


Have You Done This?

PhD Comics

http://phdcomics.com/comics/archive_print.php?comicid=1531


Have You Done This?

PhD Comics

http://phdcomics.com/comics/archive_print.php?comicid=1531


Keep your files backed up

Track changes

Collaborate on the same files with others

Edit files on one computer and then open
and continue working on another?

Do You Want to Be Able To



Dropbox.com

Register an account for free

Set up a location on your computer for the
Dropbox/  folder

Anything you put in this folder will sync to
the cloud

As soon as you change files, they
automatically update and sync!
Can download any of these flies from
the website on any device
Set this up on multiple computers so
when you change a file on one, it
updates on all the others!

The Training-Wheels Version

http://dropbox.com/


The Training-Wheels Version

My Dropbox - my life goes here



The Training-Wheels Version



Git  is an "open source distributed
version control system" widely used in
the software development industry

Track changes on steroids (if MS Word’s
Track Changes and Dropbox had a baby)

Organize folders/files to track (a
"repository" )
Take a snapshot of all of your files (a
"commit ") with "comment s"
push  these to the cloud

The Expert Version



Shows history (versions ) of files with
comments

Can fork  or branch  repository
into multiple versions at once
Good for "testing" things out without
destroying old versions!
revert  back to original versions as
needed

The Expert Version



The Expert Version



The Expert Version
Requires some advanced set up, see this excellent guide

R Studio integrates git and github commands nicely

http://happygitwithr.com/


This Class on GitHub

github.com/ryansafner/metricsF21

http://github.com/ryansafner/metricsF21


github.com/tidyverse/tidyverse github.com/jennybc/gapminder

Most Packages Start on GitHub

https://github.com/tidyverse/tidyverse
https://github.com/jennybc/gapminder


My Workflow (that I suggest to you)
1. Create a new repository on Github.
2. Start a New R Project in R Studio (link it to the github repository  - see guide)
3. Create a logical file system (see example), such as:

project # folder on my computer (the new working directory)
|
|- Data/ # folder for data files 
|- Scripts/ # folder .R code
|- Bibliography/ # folder for .bib files
|- Figures/ # folder to plots and figures to
|- paper.Rmd # write document here

4. Write document in paper.Rmd , loading/saving files from/to various folders in project
e.g. load data like df<-read_csv("Data/my_data") ; save plots like ggsave("Figures/p.png")

5. Knit document to pdf  or html .
6. Occasionally, stage  and commit  changes with a description, push  to GitHub.

*

*

*

 Optional and a bit advanced, remember this is my workflow.*

http://happygitwithr.com/
https://github.com/ryansafner/workflow


Resources
1. R Studio's R Markdown Cheatsheet for a quick overview of R markdown
2. R Studio's Overview of R Markdown for some tutorials
3. R Studio's R Markdown Reference Guide for more specific options and issues
4. Kieran Healey's The Plain Person's Guide to Plain Text Social Science on managing workflow

with plain text files, R, and Git
5. Yihui Xie's (and coauthors) R Markdown: the Definitive Guide on R Markdown syntax and

customization options
6. Hadley Wickham's (and Garrett Grolemund) R for Data Science on how to use R and R

Markdown for data science work
7. Jenny Bryan's Happy Git with R on how to use git and GitHub with R as a version control

system

https://www.rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://rmarkdown.rstudio.com/
https://www.rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
http://plain-text.co/
https://bookdown.org/yihui/rmarkdown/
http://r4ds.had.co.nz/
http://happygitwithr.com/

