1.3 - Data Visualiration with gsplot2

ECON 480 • Econometrics • Fall 2021 Ryan Safner
Assistant Professor of Economics
, safner@hood.edu
Q ryansafner/metricsF21
© metricsF21.classes.ryansafner.com

Outline

Plotting in Base R

ggplot2 and the tidyverse
Plot Layers
Some Troubleshooting

Graphics and Statistics

- Admittedly, we still need to cover basic descriptive statistics and data fundamentals
- continuous, discrete, cross-sectional, time series, panel data
- mean, median, variance, standard deviation
- random variables, distributions, PDFs, Z-scores
- bargraphs, boxplots, histograms, scatterplots
- All of this is coming in 2 weeks as we return to statistics and econometric theory
- But let's start with the fun stuff right away, even if you don't fully know the reasons. data visualiation

Plotting in Base R

Our Data Source

- For our examples, we'll use a dataset mpg from the ggplot2 library

```
library(ggplot2)
head(mpg)
## # A tibble: 6 x 11
## manufacturer model displ year cyl trans drv cty hwy fl class
## <chr> <chr> <dbl> <int> <int> <chr>
<chr> <int> <int> <chr> <chr>
## 1 audi a4 1.8 1999 4 auto(l5) f
## 2 audi a4 1.8 1999 4 manual(m5)
18 29 p compa...
## 3 audi
## 4 audi
## 5 audi
## 6 audi
    a4
    2.8 1999 6 auto(l5) f
    6 manual(m5) f 18 26 p compa...
    21 29 p compa...
    4 manual(m6) f 20 31 p compa...
    4 auto(av) f 21 30 p compa...
    6 auto(l5) f 16 26 p compa...
```


Plotting in Base \mathbf{R}

- Base R is very powerful and intuitive to plot, but not very sexy
- Basic syntax for most types of plots:
plot_type(my_df\$variable)
- If using multiple variables, you can avoid typing \$ by just typing the variable names and then in another argument to the plotting function, specify data $=m y _d f$

```
plot_type(my_df$variable1, my_df$variable2, data = my_df)
```


Plotting in Base R: Histogram

- Using the mpg data, plotting a histogram of hwy
hist(mpg\$hwy)

Plotting in Base R: Boxplot

- Using the mpg data, plotting a boxplot of hwy
boxplot(mpg\$hwy)

Plotting in Base R: Boxplot by Category

- Using the mpg data, plotting a boxplot of hwy by class
boxplot(mpg\$hwy ~ mpg\$class)
\# second method
boxplot(mpg ~ class, data = mtcars)
- The ~ is part of R 's "formula notation":
- Dependent variable goes to left
- Independent variable(s) to right, separated with + 's
- Think $y \sim x+z$ means " y is explained by x and z"

Plotting in Base R: Scatterplot

- Using the mpg data, plotting a scatterplot of hwy against displ

```
plot(mpg$hwy ~ mpg$displ)
# second method
plot(hwy ~ displ, data = mpg)
```


ggplot2 and the tidyverse

The tidyverse

"The tidyverse is an opinionated collection of R packages designed for data science. All packages share an underlying design philosophy, grammar, and data structures.

- Largely (but not only) created by Hadley Wickham
- We will look at this much more extensively next week!
- This "flavor" of R will make your coding life so much easier!

ggplot

- ggplot2 is perhaps the most popular package in R and a core element of the tidyverse
- gg stands for a grammar of graphics
- Very powerful and beautiful graphics, very customizable and reproducible, but requires a bit of a learning curve
- All those "cool graphics" you've seen in the New York Times, fivethirtyeight, the Economist, Vox, etc use the grammar of
 graphics

ggplot: All Your Figure are Belong to Us

Southwest's Delays Are Short; United's Are Long
As share of scheduled flights, 2014

- FLIGHTS DELAYED 15-119 MINUTES
- FLIGHTS DELAYED 120+ MINUTES, CANCELED OR DIVERTED

\forall fuethrivelioht
based on data from the bureau of transportation statistics

Source: fivethirtyeight

Age Distribution of American Boys Named Joseph
By year of birth

Source: fivethirtyeight

ggplot: All Your Figure are Belong to Us

Source: BBC's bbplot

Why Go gg?

"The transferrable skills from ggplot2 are not the idiosyncracies of plotting syntax, but a powerful way of thinking about visualisation, as a way of mapping between variables and the visual properties of geometric objects that you can perceive."

Hadley Wickham
Chief Scientist, R Studio

The Grammar of Graphics (gg)

- This is a true grammar
- We don't talk about specific chart types
- That you have to hunt through in Excel and reshape your data to fit it
- Instead we talk about specific chart components

The Grammar of Graphics (gg) I

- Any graphic can be built from the same components:

1. Data to be drawn from
2. Aesthetic mappings from data to some visual marking
3. Geometric objects on the plot
4. Scales define the range of values
5. Coordinates to organize location
6. Labels describe the scale and markings
7. Facets group into subplots
8. Themes style the plot elements

- Not every plot needs every component, but all plots must have the first 3!

The Grammar of Graphics (gg) II

- Any graphic can be built from the same components:

1. data to be drawn from
2. aes thetic mappings from data to some visual marking
3. geom metric objects on the plot
4. scale define the range of values
5. coord inates to organize location
6. labels describe the scale and markings
7. facet group into subplots

8. theme style the plot elements

- Not every plot needs every component, but all plots must have the first 3!

The Grammar of Graphics (gg): All at Once

All in one command

- Produces plot output in viewer
- Does not save plot
- Save with Export menu in viewer
- Adding layers requires whole code for new plot

```
ggplot(data = mpg)+
    aes(x = displ,
    y = hwy)+
    geom_point()+
    geom_smooth()
```


The Grammar of Graphics (gg): As R Objects

Saving as an object

- Saves your plot as an R object
- Does not show in viewer
- Execute the name of your object to see it
- Can add layers by calling the original plot name

```
# make and save plot
p <- ggplot(data = mpg)+
    aes(x = displ,
            y = hwy)+
    geom_point()
p # view plot
# add a layer
p + geom_smooth() # shows new plot
p <- p + geom_smooth() # saves and overwrites p
p2 <- p + geom_smooth() # saves as different ob
```


Plot Layers

The Grammar of Graphics

The Grammar of Graphics (gg): Data

Data
ggplot(data = mpg)

Data is the source of our data. As part of the
tidyverse, ggplot2 requires data to be "tidy"1:

1. Each variable forms a column
2. Each observation forms a row
3. Each observational unit forms a table
${ }^{1}$ Data "tidyness" is the core element of all tidyverse packages. Much more on all of this next class.

The Grammar of Graphics (gg): Adding Layers

Data

- Add a layer with + at the end of a line (never at the beginning!)
- Style recommendation: start a new line after each + to improve legibility!
- We will build a plot layer-by-layer

The Grammar of Graphics (gg): Aesthetics I

Data
Aesthetics
$+\operatorname{aes}()$

Aesthetics map data to visual elements or parameters

The Grammar of Graphics (gg): Aesthetics II

Data
Aesthetics

+ aes()

Aesthetics map data to visual elements or parameters

Discrete

Continuous

The Grammar of Graphics (gg): Aesthetics III

Data
Aesthetics

+ aes()

Aesthetics map data to visual elements or parameters

- displ
- hwy
- class

The Grammar of Graphics (gg): Aesthetics III

Data
Aesthetics

+ aes()

Aesthetics map data to visual elements or parameters

- displ $\rightarrow \mathbf{x}$
- hwy $\rightarrow \mathbf{y}$
- class \rightarrow shape, size, color, etc.

The Grammar of Graphics (gg): Aesthetics IV

Data
Aesthetics

+ aes()

Aesthetics map data to visual elements or parameters
Visual Space
color \longleftrightarrow class

Red
Brown
Green
Aqua
Blue
Violet
2seater
Pink
compact

midsize

The Grammar of Graphics (gg): Aesthetics IV

Data

Aesthetics

+ aes()

Aesthetics map data to visual elements or parameters

```
aes(x = displ,
    y = hwy,
    color = class)
```


The Grammar of Graphics (gg): Geoms I

Data
Aesthetics
Geoms

+ geom_*()

Geometric objects displayed on the plot

The Grammar of Graphics (gg): Geoms II

Data

Aesthetics
Geoms

+ geom_*()

Geometric objects displayed on the plot

- What geoms you should use depends on what you want to show:

Type	geom
Point	geom_point()
Line	geom_line(), geom_path()
Bar	geom_bar(), geom_col()
Histogram	geom_histogram()
Regression	geom_smooth()

The Grammar of Graphics (gg): Geoms III

Data

Aesthetics
Geoms

+ geom_*()

Geometric objects displayed on the plot

\#\# [1] "geom_abline"	"geom_area"	"geom_bar"
\#\# [5] "geom_blank"	"geom_boxplot"	"geom_col"
\#\# [9] "geom_count"	"geom_crossbar"	"geom_curve"
\#\# [13] "geom_density_2d" "geom_density2d"	"geom_dotplot"	
\#\# [17] "geom_errorbarh"	"geom_freqpoly"	"geom_hex"
\#\# [21] "geom_hline"	"geom_jitter"	"geom_label"
\#\# [25] "geom_linerange"	"geom_map"	"geom_path"
\#\# [29] "geom_pointrange" "geom_polygon"	"geom_qq"	
\#\# [33] "geom_quantile"	"geom_raster"	"geom_rect"
\#\# [37] "geom_rug"	"geom_segment"	"geom_sf"
\#\# [41] "geom_sf_text"	"geom_smooth"	"geom_spoke"
\#\# [45] "geom_text"	"geom_tile"	"geom_violin"

See http://ggplot2.tidyverse.org/reference for many more options

The Grammar of Graphics (gg): Geoms IV

Data
Aesthetics
Geoms

+ geom_*()

Geometric objects displayed on the plot
Or just start typing geom_ in R Studio!

Let's Make a Plot!

```
ggplot(data = mpg)
```


Let's Make a Plot!

```
ggplot(data = mpg)+
    aes(x = displ,
        y = hwy)
```


Let's Make a Plot!

ggplot(data = mpg)
aes(x = displ
$y=h w y)+$
geom_point()

Let's Make a Plot!

```
ggplot(data = mpg)+
    aes(x = displ,
        y = hwy)+
    geom_point(aes(color = class))
```


Let's Make a Plot!

```
ggplot(data = mpg)+
    aes(x = displ,
        y = hwy)+
    geom_point(aes(color = class))+
    geom_smooth()
```


More Geoms

Data

Aesthetics

Geoms

+ geom_*()
geom_*(aes, data, stat, position)
- data: geoms can have their own data
- has to map onto global coordinates
- aes: geoms can have their own aesthetics
- inherits global aesthetics by default
- different geoms have different available aesthetics

Change Our Plot

```
ggplot(data = mpg)+
    aes(x = displ,
        y = hwy)+
    geom_point(aes(color = class))+
    geom_smooth()
```


More Geoms II

Data
Aesthetics
Geoms

+ geom_*()
geom_*(aes, data, stat, position)
- stat: some geoms statistically transform data
- geom_histogram() uses stat_bin() to group observations into bins
- position: some adjust location of objects
- dodge, stack, jitter

Let's Change Our Plot

ggplot(data = mpg)+
aes(x = class,
$y=h w y)+$
geom_boxplot()

Let's Change Our Plot

```
ggplot(data = mpg)+
    aes(x = class)+
    geom_bar()
```


Let's Change Our Plot

```
ggplot(data = mpg)+
    aes(x = class,
        fill = drv)+
    geom_bar()
```


Let's Change Our Plot

```
ggplot(data = mpg)+
    aes(x = class,
        fill = drv)+
    geom_bar(position = "dodge")
```


Back to the Original (and saving it)

```
p <- ggplot(data = mpg)+
    aes(x = displ,
    y = hwy)+
    geom_point(aes(color = class))+
    geom_smooth()
```

p \# show plot

The Grammar of Graphics (gg): Facets I

Data
Aesthetics
Geoms
Facets

+ facet_wrap()
+ facet_grid()

```
p + facet_wrap(~year)
```


The Grammar of Graphics (gg): Facets II

Data
Aesthetics
Geoms
Facets

+ facet_wrap()
+ facet_grid()
p + facet_grid(cyl~year)

The Grammar of Graphics (gg): Labels

Data
Aesthetics

Geoms
Facets
Labels

+ labs()

```
p + facet_wrap(~year)+
    labs(x = "Engine Displacement (Liters)",
    y = "Highway MPG",
    title = "Car Mileage and Displacement",
    subtitle = "More Displacement Lowers Highway MPG",
    caption = "Source: EPA",
    color = "Vehicle Class")
```

Car Mileage and Displacement More Displacement Lowers Highway MPG

The Grammar of Graphics (gg): Scales

Data

Aesthetics
Geoms

Facets
Labels
Scales

+ scale_*_*()
scale+_+<aes>+_+<type>+()
- <aes>: parameter you want to adjust
- <type: type of parameter
- I want to change my discrete x-axis:
scale_x_discrete()
- I want to change my continuous y-axis:
scale_y_continuous()
- I want to rescale x-axis to log: scale_x_log10()
- I want to use a different color palette:
scale_fill_discrete(),

The Grammar of Graphics (gg): Scales

```
ggplot(data = mpg)+
    aes(x = displ,
    y = hwy)+
    geom_point(aes(color = class))+
    geom_smooth()+
    facet_wrap(~year)+
    labs(x = "Engine Displacement (Liter
        y = "Highway MPG",
        title = "Car Mileage and Displa
        subtitle = "More Displacement L
        caption = "Source: EPA",
        color = "Vehicle Class")+
    scale_color_viridis_d()
```

Car Mileage and Displacement More Displacement Lowers Highway MPG

The Grammar of Graphics (gg): Themes

Data

Aesthetics
Geoms
Facets
Labels
Scales

Theme changes appearance of plot decorations (things not mapped to data)

- Some themes that come with ggplot2:
- + theme_bw()
- + theme_dark()
- + theme_gray()
- + theme_minimal()
- + theme_light()
- + theme_classic()

Theme

The Grammar of Graphics (gg): Themes

Data

Aesthetics
Geoms
Facets
Labels
Scales

Theme changes appearance of plot decorations (things not mapped to data)

- Many parameters we could change
- Global options: line, rect, text, title
- axis: $x-, y$-, or other axis title, ticks, lines
- legend: plot legends for fill or color
- panel: actual plot area
- plot: whole image
- strip:facet labels

Theme

The Grammar of Graphics (gg): Themes

```
ggplot(data = mpg)+
    aes(x = displ,
    y = hwy)+
    geom_point(aes(color = class))+
    geom_smooth()+
    facet_wrap(~year)+
    labs(x = "Engine Displacement (Liter
        y = "Highway MPG",
        title = "Car Mileage and Displa
        subtitle = "More Displacement L
        caption = "Source: EPA",
        color = "Vehicle Class")+
    scale_color_viridis_d()+
    theme_bw()
```

Car Mileage and Displacement
More Displacement Lowers Highway MPG

The Grammar of Graphics (gg): Themes II

```
ggplot(data = mpg)+
    aes(x = displ,
    y = hwy)+
    geom_point(aes(color = class))+
    geom_smooth( )+
    facet_wrap(~year)+
    labs(x = "Engine Displacement (Liter
        y = "Highway MPG",
        title = "Car Mileage and Displa
        subtitle = "More Displacement L
        caption = "Source: EPA",
        color = "Vehicle Class")+
    scale_color_viridis_d()+
    theme_minimal()
```

Car Mileage and Displacement
More Displacement Lowers Highway MPG

The Grammar of Graphics (gg): Themes III

```
ggplot(data = mpg)+
    aes(x = displ,
    y = hwy)+
    geom_point(aes(color = class))+
    geom_smooth()+
    facet_wrap(~year)+
    labs(x = "Engine Displacement (Liter
        y = "Highway MPG",
        title = "Car Mileage and Displa
        subtitle = "More Displacement L
        caption = "Source: EPA",
        color = "Vehicle Class")+
    scale_color_viridis_d()+
    theme_minimal()+
    theme(text = element_text(family = "
```

Car Mileage and Displacement More Displacement Lowers Highway MPG

The Grammar of Graphics (gg): Themes III

```
ggplot(data = mpg)+
    aes(x = displ,
        y = hwy)+
    geom_point(aes(color = class))+
    geom_smooth()+
    facet_wrap(~year)+
    labs(x = "Engine Displacement (Liter
        y = "Highway MPG",
        title = "Car Mileage and Displa
        subtitle = "More Displacement L
        caption = "Source: EPA",
        color = "Vehicle Class")+
    scale_color_viridis_d()+
    theme_minimal()+
    theme(text = element_text(family
        legend.position="bottom")
```

Car Mileage and Displacement More Displacement Lowers Highway MPG

The Grammar of Graphics (gg): Themes (ggthemes)

Data
Aesthetics
Geoms
Facets
Labels
Scales
Theme

- ggthemes package adds some other nice themes

```
# install if you don't have it
# install.packages("ggthemes")
library("ggthemes") # load package
```


The Grammar of Graphics (gg): Themes IV

```
```

library("ggthemes")

```
```

library("ggthemes")
ggplot(data = mpg)+
ggplot(data = mpg)+
aes(x = displ,
aes(x = displ,
y = hwy)+
y = hwy)+
geom_point(aes(color = class))+
geom_point(aes(color = class))+
geom_smooth()+
geom_smooth()+
facet_wrap(~year)+
facet_wrap(~year)+
labs(x = "Engine Displacement (Liter
labs(x = "Engine Displacement (Liter
y = "Highway MPG",
y = "Highway MPG",
title = "Car Mileage and Displa
title = "Car Mileage and Displa
subtitle = "More Displacement L
subtitle = "More Displacement L
caption = "Source: EPA",
caption = "Source: EPA",
color = "Vehicle Class")+
color = "Vehicle Class")+
scale_color_viridis_d()+
scale_color_viridis_d()+
theme_economist()+
theme_economist()+
theme(text = element_text(family = "
theme(text = element_text(family = "
legend.position="bottom")

```
```

 legend.position="bottom")
    ```
```


The Grammar of Graphics (gg): Themes V

library("ggthemes")

```
ggplot(data = mpg)+
    aes(x = displ,
    y = hwy)+
```

geom_point(aes(color = class))+
geom_smooth()+
facet_wrap(~year)+
labs(x = "Engine Displacement (Liter
y = "Highway MPG",
title = "Car Mileage and Displa
subtitle = "More Displacement L
caption = "Source: EPA",
color = "Vehicle Class")+
scale_color_viridis_d()+
theme_fivethirtyeight()+
theme(text = element_text(family = "
legend.position="bottom")

Car Mileage and Displacement
More Displacement Lowers Highway MPG

Some Troubleshooting

Global vs. Local Aesthetics

- aes() can go in base (data) layer and/or in individual geom() layers
- All geoms will inherit global aes from data layer unless overridden

```
# ALL GEOMS will map data to colors
ggplot(data = mpg, aes(x = displ,
    y = hwy,
    color = class))+
geom_point()+
geom_smooth()
```

```
# ONLY points will map data to colors
ggplot(data = mpg, aes(x = displ,
                                y = hwy))+
    geom_point(aes(color = class))+
    geom_smooth()
```


Mapped vs. Set Aesthetics

- aes thetics such as size and color can be mapped from data or set to a single value
- Map inside of aes() , set outside of aes()

```
# Point colors are mapped from class data
ggplot(data = mpg, aes(x = displ,
    y = hwy))+
    geom_point(aes(color = class))+
    geom_smooth()
```

```
# Point colors are all set to blue
ggplot(data = mpg, aes(x = displ,
    y = hwy))+
    geom_point(aes(), color = "red")+
    geom_smooth(aes(), color = "blue")
```


Go Crazy I

```
# I did some (hidden) data work befor\epsilon
ggplot(data = county_full,
    mapping = aes(x = long, y
            fill = pop_d
            group = grou
geom_polygon(color = "gray90", size
coord_equal()+
scale_fill_brewer(palette="Blues",
                            labels =
    labs(fill = "Population per\nsquare
        theme_map() +
        guides(fill = guide_legend(nrow =
        theme(legend.position = "bottom")
```


Go Crazy II

```
library("gapminder")
library("gganimate")
ggplot(gapminder) +
    aes(x = gdpPercap, y = lifeExp, size
    geom_point() +
    guides(color = FALSE, size = FALSE)
    scale_x_log10(
    breaks = c(10^3, 10^4, 10^5),
    labels = c("$1k", "$10k", "$100k")
    scale_color_manual(values = gapminde
    scale_size(range = c(0.5, 12)) +
    labs(
        x = "GDP per capita",
        y = "Life Expectancy",
        caption = "Source: Hans Rosling's
    theme_minimal(14, base_family = "Fir
    theme(
        strip.text = element_text(size = 1
        panel.border = element_rect(fill =
```

Income and Life Expectancy - 1952

Source: Hans Rosling's gapminder.org

Data Visualization and Graphic Design Principles

- We will return to various graphics as we cover descriptive statistics and regression
- I hope to cover some basic principles of good graphic design for figures and plots
- If not in class, I will make a page on the website, and/or a video

Remember:

WITH GREAT POWER

GOMES CREIT RESPOMSIBIMTIT

Less is More

"Shoot me"

Less is More:

Remove

to improve
(the data-ink ratio)

Try to Show One Trend Really Clearly

[^0]
Reference: R Studio Makes Great "Cheat Sheet"s!

Reference

On ggplot2

- R Studio's ggplot2 Cheat Sheet
- ggplot2 's website reference section
- Hadley Wickham's R for Data Science book chapter on ggplot2
- STHDA's be awesome in ggplot2
- r-statistic's top 50 ggplot2 visualizations

On data visualization

- Kieran Healy's Data Visualization: A Practical Guide
- Claus Wilke's Fundamentals of Data Visualization
- PolicyViz Better Presentations
- Karl Broman's How to Display Data Badly.

[^0]: Source: Yascha Mounk and Roberto Stefan Foa, "The Signs of Democratic Deconsolidation," Journal of Democracy | By The New York Times

