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The Two Big Problems with Data



We want to use econometrics to identify
causal relationships and make inferences
about them

�. Problem for identi�cation: endogeneity

�. Problem for inference: randomness

Two Big Problems with Data



An independent variable  is
exogenous if its variation is unrelated to
other factors that affect the dependent
variable 

An independent variable  is
endogenous if its variation is related to
other factors that affect the dependent
variable 

Note: unfortunately this is different from
how economists talk about endogenous

Identi�cation Problem: Endogeneity
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An independent variable  is
exogenous if its variation is unrelated to
other factors that affect the dependent
variable 

Identi�cation Problem: Endogeneity

(X)

(Y)



An independent variable  is
endogenous if its variation is related to
other factors that affect the dependent
variable , e.g. 

Identi�cation Problem: Endogeneity

(X)

(Y) Z



Data is random due to natural sampling
variation

Taking one sample of a population will
yield slightly different information than
another sample of the same population

Common in statistics, easy to �x

Inferential Statistics: making claims about
a wider population using sample data

We use common tools and techniques
to deal with randomness

Inference Problem: Randomness



The Two Problems: Where We're Heading...Ultimately

Sample  Population  Unobserved Parameters

We want to identify causal relationships between population variables

Logically �rst thing to consider
Endogeneity problem

We'll use sample statistics to infer something about population parameters

In practice, we'll only ever have a �nite sample distribution of data
We don't know the population distribution of data
Randomness problem

− →−−−−−−−−−−
statistical inference

− →−−−−−−−−−−−
causal indentification



Data 101



Data are information with context

Individuals are the entities described by
a set of data

e.g. persons, households, �rms,
countries

Data 101



Variables are particular characteristics about an
individual

e.g. age, income, pro�ts, population, GDP,
marital status, type of legal institutions

Observations or cases are the separate
individuals described by a collection of variables

e.g. for one individual, we have their age,
sex, income, education, etc.

individuals and observations are not necessarily
the same:

e.g. we can have multiple observations on
the same individual over time

Data 101



Categorical data place an individual into
one of several possible categories

e.g. sex, season, political party
may be responses to survey
questions
can be quantitative (e.g. age, zip
code)

In R : character  or factor  type
data

factor   speci�c possible
categories

Categorical Data

⟹



diamonds %>%
  count(cut) %>%
  mutate(frequency = n / sum(n),
         percent = round(frequency * 100, 2))

Summary of diamonds by cut

cut n frequency percent

Fair 1610 0.0298480 2.98

Good 4906 0.0909529 9.10

Very Good 12082 0.2239896 22.40

Premium 13791 0.2556730 25.57

Ideal 21551 0.3995365 39.95

Good way to represent categorical data is
with a frequency table

Count (n): total number of individuals in
a category

Frequency: proportion of a category's
ocurrence relative to all data

Multiply proportions by 100% to get
percentages

Categorical Data: Visualizing I



Charts and graphs are always better
ways to visualize data

A bar graph represents categories as
bars, with lengths proportional to the
count or relative frequency of each
category

Categorical Data: Visualizing II

ggplot(diamonds, aes(x=cut,
                     fill=cut))+
  geom_bar()+
  guides(fill=F)+
  theme_pander(base_family = "Fira Sans Condens
           base_size=20)



Avoid pie charts!

People are not good at judging 2-d
differences (angles, area)

People are good at judging 1-d
differences (length)

Categorical Data: Visualizing III



Maybe a stacked bar chart

Categorical Data: Visualizing IV

diamonds %>%
  count(cut) %>%
ggplot(data = .)+
  aes(x = "",
      y = n)+
  geom_col(aes(fill = cut))+
  geom_label(aes(label = cut,
                 color = cut),
             position = position_stack(vjust = 
             )+
  guides(color = F,
         fill = F)+
  theme_void()



Maybe lollipop chart

Categorical Data: Visualizing IV

diamonds %>%
  count(cut) %>%
  mutate(cut_name = as.factor(cut)) %>%
ggplot(., aes(x = cut_name, y = n, color = cut)
 geom_point(stat="identity",
            fill="black",
            size=12)  +
  geom_segment(aes(x = cut_name, y = 0,
                   xend = cut_name,
                   yend = n), size = 2)+
  geom_text(aes(label = n),color="white", size=
  coord_flip()+
  labs(x = "Cut")+
  theme_pander(base_family = "Fira Sans Condens
                base_size=20)+
  guides(color = F)



Maybe a treemap

library(treemapify)
diamonds %>%
  count(cut) %>%
ggplot(., aes(area = n, fill = cut)) +
  geom_treemap() +
  guides(fill = FALSE) +
  geom_treemap_text(aes(label = cut),
                    colour = "white",
                    place = "topleft",
                    grow = TRUE)

Categorical Data: Visualizing IV



Quantitative variables take on numerical values
of equal units that describe an individual

Units: points, dollars, inches
Context: GPA, prices, height

We can mathematically manipulate only
quantitative data

e.g. sum, average, standard deviation

In R : numeric  type data

integer  if whole number
double  if has decimals

Quantitative Data I



Discrete data are �nite, with a countable
number of alternatives

Categorical: place data into categories

e.g. letter grades: A, B, C, D, F
e.g. class level: freshman, sophomore,
junior, senior

Quantitative: integers

e.g. SAT Score, number of children,
age (years)

Discrete Data



Continuous data are in�nitely divisible,
with an uncountable number of
alternatives

e.g. weight, length, temperature, GPA

Many discrete variables may be treated
as if they are continuous

e.g. SAT scores (whole points), wages
(dollars and cents)

Continuous Data



ID Name Age Sex Income

1 John 23 Male 41000

2 Emile 18 Male 52600

3 Natalya 28 Female 48000

4 Lakisha 31 Female 60200

5 Cheng 36 Male 81900

The most common data structure we use
is a spreadsheet

In R: a data.frame  or tibble

A row contains data about all variables
for a single individual

A column contains data about a single
variable across all individuals

Spreadsheets



ID Name Age Sex Income

1 John 23 Male 41000

2 Emile 18 Male 52600

3 Natalya 28 Female 48000

4 Lakisha 31 Female 60200

5 Cheng 36 Male 81900

Each cell can be referenced by its row
and column (in that order!),
df[row,column]

example[3,2] # value in row 3, column 2

## # A tibble: 1 × 1
##   Name   
##   <chr>  
## 1 Natalya

Recall how to “subset” data frames from
1.2; though it’s now much easier with
filter()  and select() !

Spreadsheets

https://metricsf21.classes.ryansafner.com/slides/1.2-slides#67


Spreadsheets II
It is common to use some notation like the following:

Let  be a simple data series on variable 

 individual observations
 is the value of the  observation for 

Quick Check: Let  represent the score on a homework assignment:

�. What is ?
�. What is ?
�. What is ?

{ , ,⋯ , }x1 x2 xn X

n

xi ith i = 1, 2,⋯ , n

x

75, 100, 92, 87, 79, 0, 95

n

x1

x6



ID Name Age Sex Income

1 John 23 Male 41000

2 Emile 18 Male 52600

3 Natalya 28 Female 48000

4 Lakisha 31 Female 60200

5 Cheng 36 Male 81900

Cross-sectional data: observations of
individuals at a given point in time

Each observation is a unique individual

Simplest and most common data

A "snapshot" to compare differences
across individuals

Datasets: Cross-Sectional

xi



Year GDP Unemployment CPI

1950 8.2 0.06 100

1960 9.9 0.04 118

1970 10.2 0.08 130

1980 12.4 0.08 190

1985 13.6 0.06 196

Time-series data: observations of the
same individual(s) over time

Each observation is a time period

Often used for macroeconomics, �nance,
and forecasting

Unique challenges for time series

A "moving picture" to see how
individuals change over time

Datasets: Time-Series

xt



City Year Murders Population UR

Philadelphia 1986 5 3.700 8.7

Philadelphia 1990 8 4.200 7.2

D.C. 1986 2 0.250 5.4

D.C. 1990 10 0.275 5.5

New York 1986 3 6.400 9.6

Panel, or longitudinal dataset: a time-
series for each cross-sectional entity

Must be same individuals over time

Each obs. is an individual in a time period

More common today for serious
researchers; unique challenges and
bene�ts

A combination of "snapshot" comparisons
over time

Datasets: Panel

xit



Descriptive Statistics



Variables and Distributions
Variables take on different values, we can describe a variable's distribution (of these values)

We want to visualize and analyze distributions to search for meaningful patterns using
statistics



Two main branches of statistics:

�. Descriptive Statistics: describes or
summarizes the properties of a sample

�. Inferential Statistics: infers properties
about a larger population from the
properties of a sample

Two Branches of Statistics

†

 We'll encounter inferential statistics mainly in the context of regression later.†



A common way to present a quantitative
variable's distribution is a histogram

The quantitative analog to the bar
graph for a categorical variable

Divide up values into bins of a certain
size, and count the number of values
falling within each bin, representing
them visually as bars

Histograms



Example: a class of 13 students takes a quiz
(out of 100 points) with the following results:

Histogram: Example

{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95}



Example: a class of 13 students takes a quiz
(out of 100 points) with the following results:

Histogram: Example

quizzes<-tibble(scores = c(0,62,66,71,71,74,76,79,83,86,88,93

{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95}



Example: a class of 13 students takes a quiz
(out of 100 points) with the following results:

Histogram: Example

h<-ggplot(quizzes,aes(x=scores))+
  geom_histogram(breaks = seq(0,100,10),
                 color = "white",
                 fill = "#56B4E9")+
  scale_x_continuous(breaks = seq(0,100,10))+
  scale_y_continuous(limits = c(0,6), expand = c(0,0))+
  labs(x = "Scores",
       y = "Number of Students")+
  ggthemes::theme_pander(base_family = "Fira Sans Condensed",
           base_size=20)
h

{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95}



We are often interested in the shape or
pattern of a distribution, particularly:

Measures of center
Measures of dispersion
Shape of distribution

Descriptive Statistics



Measures of Center



Mode
The mode of a variable is simply its most frequent value

A variable can have multiple modes

Example: a class of 13 students takes a quiz (out of 100 points) with the following results:

{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95}



There is no dedicated mode()  function
in R , surprisingly

A workaround in dplyr :

quizzes %>%
  count(scores) %>%
  arrange(desc(n))

## # A tibble: 12 × 2
##    scores     n
##     <dbl> <int>
##  1     71     2
##  2      0     1
##  3     62     1
##  4     66     1
##  5     74     1
##  6     76     1
##  7     79     1
##  8     83     1
##  9     86     1
## 10     88     1
## 11     93     1
## 12     95     1

Mode



Looking at a histogram, the modes are
the "peaks" of the distribution

Note: depends on how wide you make
the bins!

May be unimodal, bimodal, trimodal, etc

Multi-Modal Distributions



A distribution is symmetric if it looks
roughly the same on either side of the
"center"

The thinner ends (far left and far right)
are called the tails of a distribution

Symmetry and Skew I



If one tail stretches farther than the
other, distribution is skewed in the
direction of the longer tail

Symmetry and Skew I



Outlier: extreme value that does not
appear part of the general pattern of a
distribution

Can strongly affect descriptive statistics

Might be the most informative part of the
data

Could be the result of errors

Should always be explored and
discussed!

Outliers



Arithmetic Mean (Population)
The natural measure of the center of a population's distribution is its "average" or
arithmetic mean 

For  values of variable , "mu" is the sum of all individual  values  from 1 to ,
divided by the  number of values

See today's class notes for more about the summation operator, , it'll come up again!

(μ)

μ = =
+ +. . . +x1 x2 xN

N

1

N ∑
i=1

N

xi

N x x ( )xi N

N †

Σ

 Note the mean need not be an actual value of the data!†

https://metricsf21.classes.ryansafner.com/content/2.1-content


Example:

quizzes %>%
  summarize(mean=mean(scores))

## # A tibble: 1 × 1
##    mean
##   <dbl>
## 1  72.6

Arithmetic Mean (Sample)
When we have a sample, we compute the sample mean 

For  values of variable , "x-bar" is the sum of all individual  values  divided by the 
number of values

( )x̄

= =x̄

+ +. . . +x1 x2 xn

n

1

n ∑
i=1

n

xi

n x x ( )xi n

{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95}

x̄

x̄

x̄

= (0 + 62 + 66 + 71 + 71 + 74 + 76 + 79 + 83 + 86 + 88 + 93 + 95)
1

13

=
944

13

= 72.62



Example:

quizzes %>%
  filter(scores>0) %>%
  summarize(mean=mean(scores))

## # A tibble: 1 × 1
##    mean
##   <dbl>
## 1  78.7

Arithmetic Mean: Affected by Outliers
If we drop the outlier (0)

{62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95}

x̄ = (62 + 66 + 71 + 71 + 74 + 76 + 79 + 83 + 86 + 88 + 93 + 95)
1

12

=
944

12

= 78.67



Median

The median is the midpoint of the distribution

50% to the left of the median, 50% to the right of the median

Arrange values in numerical order

For odd : median is middle observation
For even : median is average of two middle observations

{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95}

n

n



Mean, Median, and Outliers



Symmetric distribution: mean  median

symmetric %>%
  summarize(mean = mean(x),
            median = median(x))

## # A tibble: 1 × 2
##    mean median
##   <dbl>  <dbl>
## 1     4      4

Mean, Median, Symmetry, Skew I

≈



Left-skewed: mean  median

leftskew %>%
  summarize(mean = mean(x),
            median = median(x))

##       mean median
## 1 4.615385      5

Mean, Median, Symmetry, Skew II

<



Right-skewed: mean  median

rightskew %>%
  summarize(mean = mean(x),
            median = median(x))

## # A tibble: 1 × 2
##    mean median
##   <dbl>  <dbl>
## 1  3.38      3

Mean, Median, Symmetry, Skew III

>



Measures of Dispersion



Measures of Dispersion: Range
The more variation in the data, the less helpful a measure of central tendency will tell us

Beyond just the center, we also want to measure the spread

Simplest metric is range = max − min



�. Minimum value
�. 25  percentile , median of �rst 50% of data)
�. 50  percentile (median, 
�. 25  percentile , median of last 50% of data)
�. Maximum value

# Base R summary command (includes Mean)
summary(quizzes$scores)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    0.00   71.00   76.00   72.62   86.00   95.00

quizzes %>% # dplyr
  summarize(Min = min(scores),
            Q1 = quantile(scores, 0.25),
            Median = median(scores),
            Q3 = quantile(scores, 0.75),
            Max = max(scores))

## # A tibble: 1 × 5
##     Min    Q1 Median    Q3   Max
##   <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1     0    71     76    86    95

Measures of Dispersion: 5 Number Summary I
Common set of summary statistics of a distribution: "�ve number summary":

th (Q1

th )Q2

th (Q3



Measures of Dispersion: 5 Number Summary II
The  percentile of a distribution is the value that places  percent of values beneath it

quizzes %>%
  summarize("37th percentile" = quantile(scores,0.37))

## # A tibble: 1 × 1
##   `37th percentile`
##               <dbl>
## 1              72.3

nth n



Boxplots are a great way to visualize the 5
number summary

Height of box:  to  (known as
interquartile range (IQR), middle 50% of data)

Line inside box: median (50  percentile)

"Whiskers" identify data within 

Points beyond whiskers are outliers

common de�nition: 

Boxplots I

Q1 Q3

th

1.5 × IQR

Outlier > 1.5 × IQR



Comparisons I
Boxplots (and �ve number summaries) are great for comparing two distributions

Example:

Quiz 1

Quiz 2

: {0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95}

: {50, 62, 72, 73, 79, 81, 82, 82, 86, 90, 94, 98, 99}



quizzes_new %>% summary()

##     student       quiz_1          quiz_2     
##  Min.   : 1   Min.   : 0.00   Min.   :50.00  
##  1st Qu.: 4   1st Qu.:71.00   1st Qu.:73.00  
##  Median : 7   Median :76.00   Median :82.00  
##  Mean   : 7   Mean   :72.62   Mean   :80.62  
##  3rd Qu.:10   3rd Qu.:86.00   3rd Qu.:90.00  
##  Max.   :13   Max.   :95.00   Max.   :99.00

Comparisons II



Aside: Making Nice Summary Tables I
I don't like the options available for printing out summary statistics

So I wrote my own R function  called summary_table()  that makes nice summary tables (it uses
dplyr  and tidyr !). To use:

�. Download the summaries.R  �le from the website  and move it to your working directory/project folder

�. Load the function with the source()  command:

source("summaries.R")

†

‡

 One day I'll make this part of a package I'll write.

 If it was a package, then you'd load with library() . But you can run a single .R  script with source() .

†

‡

https://metricsf21.classes.ryansafner.com/files/summaries.R


Aside: Making Nice Summary Tables II
3) The function has at least 2 arguments: the data.frame  (automatically piped in if you use
the pipe!) and then all variables you want to summarize, separated by commas

mpg %>%
  summary_table(hwy, cty, cyl)

## # A tibble: 3 × 9
##   Variable   Obs   Min    Q1 Median    Q3   Max  Mean `Std. Dev.`
##   <chr>    <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl>       <dbl>
## 1 cty        234     9    14     17    19    35 16.9         4.26
## 2 cyl        234     4     4      6     8     8  5.89        1.61
## 3 hwy        234    12    18     24    27    44 23.4         5.95

†

 There is one restriction: No variable name can have an underscore (_)  in it. You will have to rename them or else
you will break the function!

†



Aside: Making Nice Summary Tables II
4) When knit ted in R markdown , it looks nicer:

mpg %>%
  summary_table(hwy, cty, cyl) %>%
  knitr::kable(., format="html")

Variable Obs Min Q1 Median Q3 Max Mean Std. Dev.

cty 234 9 14 17 19 35 16.86 4.26

cyl 234 4 4 6 8 8 5.89 1.61

hwy 234 12 18 24 27 44 23.44 5.95

We'll talk more about using markdown  and making �nal products nicer when we discuss
your paper project (have you forgotten?)



Measures of Dispersion: Deviations
Every observation  deviates from the mean of the data:

There are as many deviations as there are data points 

We can measure the average or standard deviation of a variable from its mean

Before we get there...

i

deviatio = − μni xi

(n)



Variance (Population)
The population variance  of a population distribution measures the average of the
squared deviations from the population mean 

Why do we square deviations?

What are these units?

( )σ
2

(μ)

= ( − μσ
2

1

N ∑
i=1

N

xi )2



Standard Deviation (Population)
Square root the variance to get the population standard deviation , the average
deviation from the population mean (in same units as )

(σ)

x

σ = =σ
2‾‾‾√ ( − μ

1

N ∑
i=1

N

xi )2

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾

⎷





Variance (Sample)
The sample variance  of a sample distribution measures the average of the squared
deviations from the sample mean 

Why do we divide by ?

( )s
2

( )x̄

= ( −σ
2

1

n − 1 ∑
i=1

n

xi x̄)2

n − 1



Standard Deviation (Sample)
Square root the sample variance to get the sample standard deviation , the average
deviation from the sample mean (in same units as )

(s)

x

s = =s
2‾‾√ ( −

1

n − 1 ∑
i=1

n

xi x̄)2

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

⎷





Sample Standard Deviation: Example

Example: Calculate the sample standard deviation for the following series:

sd(c(2,4,6,8,10))

## [1] 3.162278

{2, 4, 6, 8, 10}



The Steps to Calculate sd(), Coded I
#  first let's save our data in a tibble
sd_example<-tibble(x=c(2,4,6,8,10))

# first find the mean (just so we know)

sd_example %>%
  summarize(mean(x))

## # A tibble: 1 × 1
##   `mean(x)`
##       <dbl>
## 1         6

# now let's make some more columns:
sd_example <- sd_example %>%
  mutate(deviations = x-mean(x), # take deviations from mean
         deviations_sq = deviations^2) # square them



sd_example # see what we made ## # A tibble: 5 × 3
##       x deviations deviations_sq
##   <dbl>      <dbl>         <dbl>
## 1     2         -4            16
## 2     4         -2             4
## 3     6          0             0
## 4     8          2             4
## 5    10          4            16

The Steps to Calculate sd(), Coded II



sd_example %>%
  # sum the squared deviations
  summarize(sum_sq_devs = sum(deviations_sq), 
            # divide by n-1 to get variance
            variance = sum_sq_devs/(n()-1), 
            # square root to get sd
            std_dev = sqrt(variance))

## # A tibble: 1 × 3
##   sum_sq_devs variance std_dev
##         <dbl>    <dbl>   <dbl>
## 1          40       10    3.16

The Steps to Calculate sd(), Coded III



Sample Standard Deviation: You Try

You Try: Calculate the sample standard deviation for the following series:

sd(c(1,3,5,7))

## [1] 2.581989

{1, 3, 5, 7}



Population parameters

Population size: 

Mean: 

Variance: 

Standard deviation: 

Sample statistics

Population size: 

Mean: 

Variance: 

Standard deviation: 

Descriptive Statistics: Populations vs. Samples

N

μ

= ( − μσ
2 1

N ∑
i=1

N

xi )2

σ = σ2‾‾‾√

n

x̄

= ( −s2 1

n−1 ∑
i=1

n

xi x̄)2

s = s2‾‾√


