2.1 — Data 101 & Descriptive Statistics ECON 480 • Econometrics • Fall 2021 Ryan Safner Assistant Professor of Economics ✓ safner@hood.edu ○ ryansafner/metricsF21 ○ metricsF21.classes.ryansafner.com

Outline

The Two Big Problems with Data

<u>Data 101</u>

Descriptive Statistics

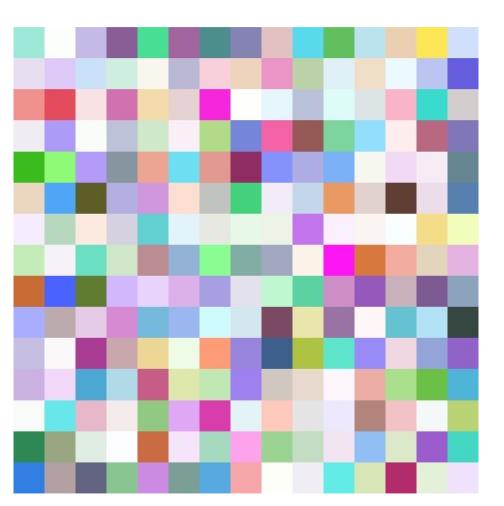
Measures of Center

<u>Measures of Dispersion</u>

The Two Big Problems with Data

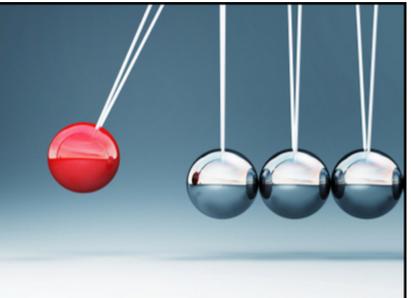
Two Big Problems with Data

- We want to use econometrics to **identify** causal relationships and make **inferences** about them
- 1. Problem for identification: endogeneity
- 2. Problem for inference: randomness



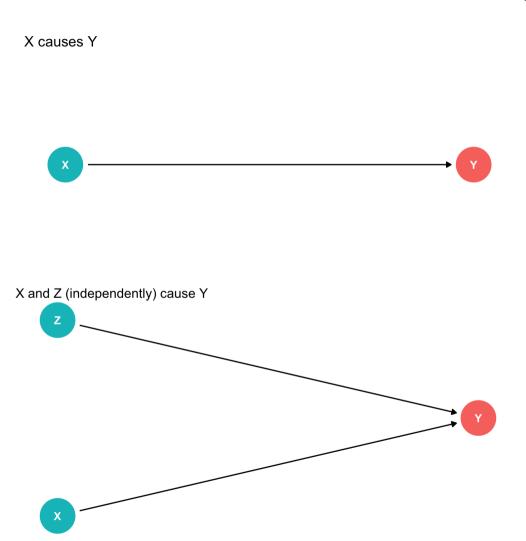
Identification Problem: Endogeneity

- An independent variable (X) is
 exogenous if its variation is unrelated to other factors that affect the dependent variable (Y)
- An independent variable (X) is
 endogenous if its variation is related to
 other factors that affect the dependent
 variable (Y)
- Note: unfortunately this is different from how economists talk about endogenous



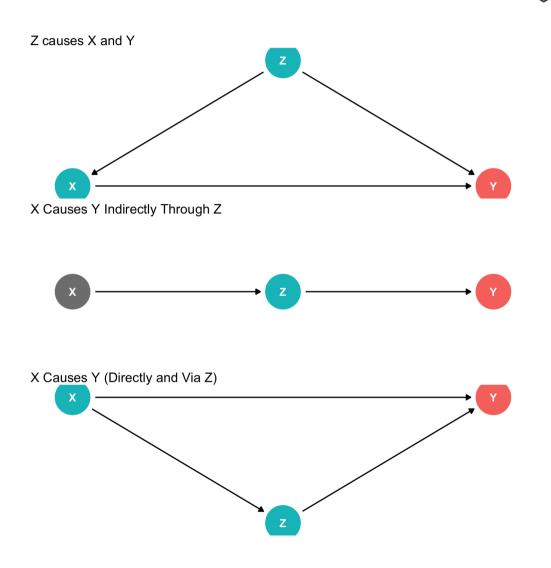
Identification Problem: Endogeneity

 An independent variable (X) is
 exogenous if its variation is unrelated to other factors that affect the dependent variable (Y)



Identification Problem: Endogeneity

 An independent variable (X) is
 endogenous if its variation is related to other factors that affect the dependent variable (Y), e.g. Z



Inference Problem: Randomness

- Data is random due to natural sampling variation
 - Taking one sample of a population will yield slightly different information than another sample of the same population
- Common in statistics, *easy to fix*
- Inferential Statistics: making claims about a wider population using sample data
 - We use common tools and techniques to deal with randomness

The Two Problems: Where We're Heading...Ultimately

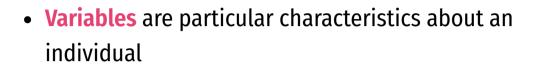
- We want to **identify** causal relationships between **population** variables
 - Logically first thing to consider
 - Endogeneity problem
- We'll use **sample** *statistics* to **infer** something about population *parameters*
 - In practice, we'll only ever have a finite *sample distribution* of data
 - We *don't* know the *population distribution* of data
 - Randomness problem

Data 101

Data 101

- **Data** are information with context
- Individuals are the entities described by a set of data
 - e.g. persons, households, firms, countries

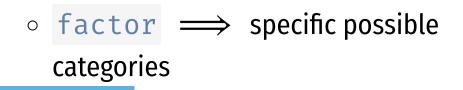
Data 101



- e.g. age, income, profits, population, GDP, marital status, type of legal institutions
- **Observations** or **cases** are the separate individuals described by a collection of variables
 - e.g. for one individual, we have their age, sex, income, education, etc.
- individuals and observations are *not necessarily* the same:
 - e.g. we can have multiple observations on the same individual over time

Categorical Data

- **Categorical data** place an individual into one of several possible *categories*
 - $\circ~$ e.g. sex, season, political party
 - may be responses to survey questions
 - can be quantitative (e.g. age, zip code)
- In R: character or factor type data



Question	Categories or Responses	
Do you invest in the stock market?	Yes No	
What kind of advertising do you use?	Newspapers Internet Direct mailings	
What is your class at school?	Freshman Sophomore Junior Senior	
l would recommend this course to another student.	Strongly Disagree Slightly Disagree Slightly Agree Strongly Agree	
How satisfied are you with this product?	Very Unsatisfied Unsatisfied Satisfied Satisfied Very Satisfied	

Categorical Data: Visualizing I

```
diamonds %>%
  count(cut) %>%
  mutate(frequency = n / sum(n),
      percent = round(frequency * 100, 2))
```

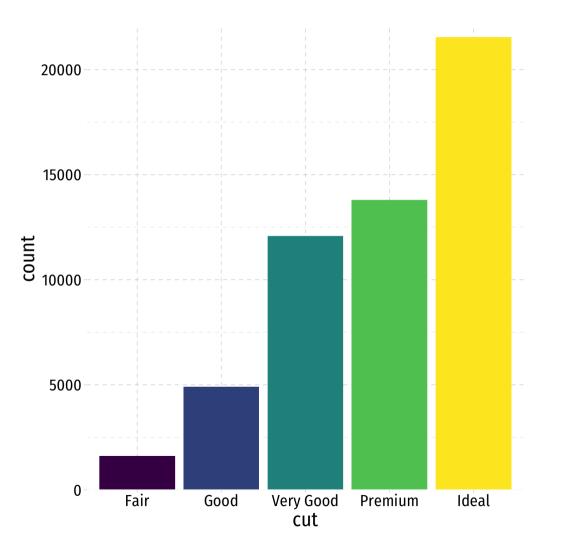
Summary of diamonds by cut

cut	n	frequency	percent
Fair	1610	0.0298480	2.98
Good	4906	0.0909529	9.10
Very Good	12082	0.2239896	22.40
Premium	13791	0.2556730	25.57
Ideal	21551	0.3995365	39.95

- Good way to represent categorical data is with a **frequency table**
- **Count (n)**: total number of individuals in a category
- Frequency: proportion of a category's ocurrence relative to all data
 - Multiply proportions by 100% to get
 percentages

Categorical Data: Visualizing II

- Charts and graphs are *always* better ways to visualize data
- A bar graph represents categories as bars, with lengths proportional to the count or relative frequency of each category



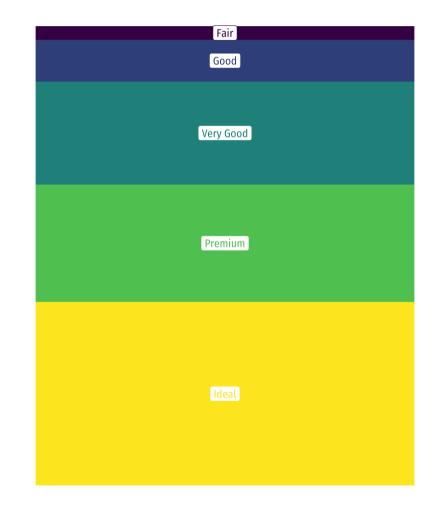
Categorical Data: Visualizing III

- Avoid pie charts!
- People are *not* good at judging 2-d differences (angles, area)
- People *are* good at judging 1-d differences (length)

Categorical Data: Visualizing IV

• Maybe a *stacked bar chart*

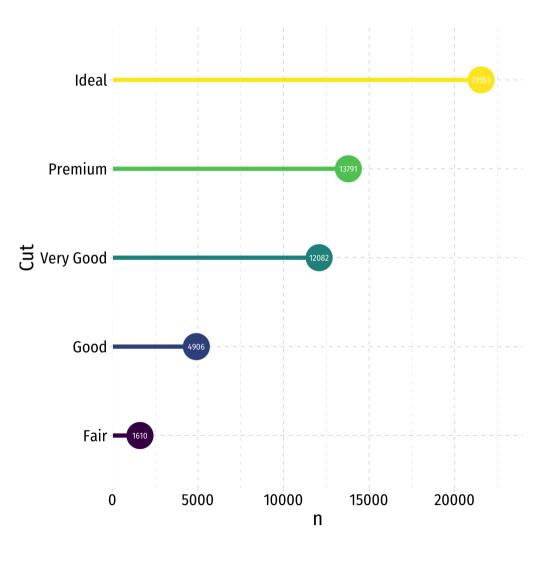
```
diamonds %>%
 count(cut) %>%
ggplot(data = .)+
 aes(x = "",
      y = n) +
 geom_col(aes(fill = cut))+
  geom_label(aes(label = cut,
                 color = cut),
             position = position_stack(vjust =
             )+
  guides(color = F,
        fill = F)+
 theme_void()
```



Categorical Data: Visualizing IV

• Maybe *lollipop chart*

```
diamonds %>%
 count(cut) %>%
 mutate(cut_name = as.factor(cut)) %>%
ggplot(., aes(x = cut_name, y = n, color = cut)
 geom_point(stat="identity",
            fill="black",
            size=12) +
 geom_segment(aes(x = cut_name, y = 0,
                   xend = cut_name,
                   yend = n), size = 2)+
 geom_text(aes(label = n),color="white", size=
 coord_flip()+
 labs(x = "Cut")+
 theme_pander(base_family = "Fira Sans Condens
                base_size=20)+
 guides(color = F)
```



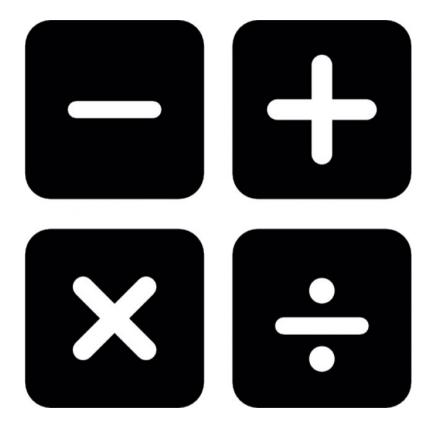
Categorical Data: Visualizing IV

• Maybe a *treemap*

Premium Fair Good Very Good

Quantitative Data I

- **Quantitative variables** take on numerical values of equal units that describe an individual
 - Units: points, dollars, inches
 - Context: GPA, prices, height
- We can mathematically manipulate *only* quantitative data
 - $\circ~$ e.g. sum, average, standard deviation
- In R: numeric type data
 - integer if whole number
 - double if has decimals



Discrete Data

- **Discrete data** are finite, with a countable number of alternatives
- **Categorical**: place data into categories
 - $\circ~$ e.g. letter grades: A, B, C, D, F
 - e.g. class level: freshman, sophomore, junior, senior
- Quantitative: integers
 - e.g. SAT Score, number of children, age (years)

Continuous Data

- **Continuous data** are infinitely divisible, with an uncountable number of alternatives
 - e.g. weight, length, temperature, GPA
- Many discrete variables may be treated as if they are continuous
 - e.g. SAT scores (whole points), wages (dollars and cents)

Spreadsheets

ID	Name	Age	Sex	Income
1	John	23	Male	41000
2	Emile	18	Male	52600
3	Natalya	28	Female	48000
4	Lakisha	31	Female	60200
5	Cheng	36	Male	81900

• The most common data structure we use is a **spreadsheet**

• In *R*: a data.frame or tibble

- A row contains data about all variables for a single individual
- A column contains data about a single variable across all individuals

Spreadsheets

ID	Name	Age	Sex	Income
1	John	23	Male	41000
2	Emile	18	Male	52600
3	Natalya	28	Female	48000
4	Lakisha	31	Female	60200
5	Cheng	36	Male	81900

 Each cell can be referenced by its row and column (in that order!), df[row,column]

example[3,2] # value in row 3, column 2

```
## # A tibble: 1 × 1
## Name
## <chr>
## 1 Natalya
```

Recall <u>how to "subset" data frames</u> from
 1.2; though it's now much easier with
 filter() and select()!

Spreadsheets II

- It is common to use some notation like the following:
- Let $\{x_1, x_2, \dots, x_n\}$ be a simple data series on variable X
 - \circ *n* individual observations
 - x_i is the value of the i^{th} observation for $i = 1, 2, \dots, n$

Quick Check: Let *x* represent the score on a homework assignment:

75, 100, 92, 87, 79, 0, 95

What is *n*?
 What is *x*₁?
 What is *x*₆?

Datasets: Cross-Sectional

ID	Name	Age	Sex	Income
1	John	23	Male	41000
2	Emile	18	Male	52600
3	Natalya	28	Female	48000
4	Lakisha	31	Female	60200
5	Cheng	36	Male	81900

- **Cross-sectional data**: observations of individuals at a given point in time
- Each observation is a unique individual

 x_i

- Simplest and most common data
- A "snapshot" to compare differences across individuals

Datasets: Time-Series

Year	GDP	Unemployment	CPI
1950	8.2	0.06	100
1960	9.9	0.04	118
1970	10.2	0.08	130
1980	12.4	0.08	190
1985	13.6	0.06	196

- Time-series data: observations of the same individual(s) over time
- Each observation is a time period

 X_t

- Often used for macroeconomics, finance, and forecasting
- Unique challenges for time series
- A "moving picture" to see how individuals change over time

Datasets: Panel

City	Year	Murders	Population	UR
Philadelphia	1986	5	3.700	8.7
Philadelphia	1990	8	4.200	7.2
D.C.	1986	2	0.250	5.4
D.C.	1990	10	0.275	5.5
New York	1986	3	6.400	9.6

- **Panel**, or **longitudinal** dataset: a timeseries for *each* cross-sectional entity
 - Must be *same* individuals over time
- Each obs. is an individual in a time period

x_{it}

- More common today for serious researchers; unique challenges and benefits
- A combination of "snapshot" comparisons over time

Descriptive Statistics

Variables and Distributions

- Variables take on different values, we can describe a variable's distribution (of these values)
- We want to *visualize* and *analyze* distributions to search for meaningful patterns using statistics

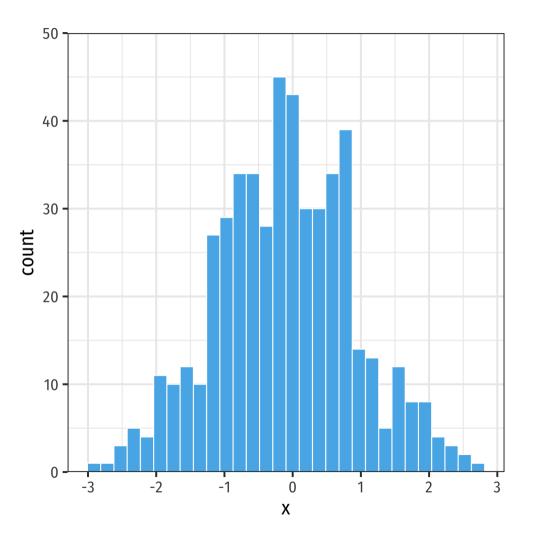
Two Branches of Statistics

- Two main branches of statistics:
- 1. **Descriptive Statistics:** describes or summarizes the properties of a sample
- Inferential Statistics: infers properties about a larger population from the properties of a sample[†]

[†] We'll encounter inferential statistics mainly in the context of regression later.

Histograms

- A common way to present a *quantitative* variable's distribution is a **histogram**
 - The quantitative analog to the bar graph for a categorical variable
- Divide up values into **bins** of a certain size, and count the number of values falling within each bin, representing them visually as bars



Histogram: Example

Example: a class of 13 students takes a quiz (out of 100 points) with the following results:

 $\{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}$

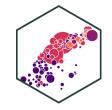
Histogram: Example

Example: a class of 13 students takes a quiz (out of 100 points) with the following results:

 $\{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}$

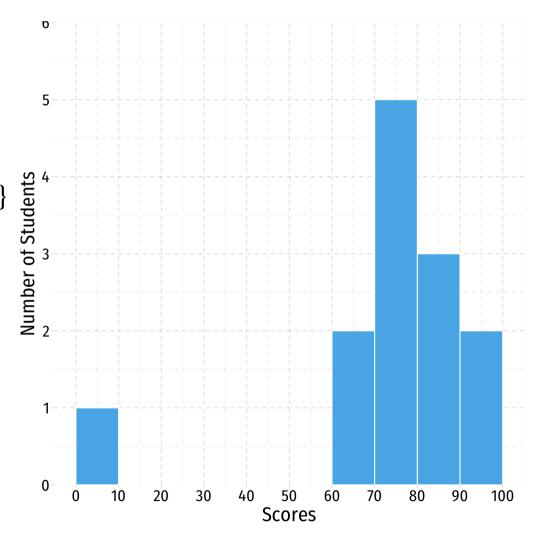
quizzes<-tibble(scores = c(0,62,66,71,71,74,76,79,83,86,88,93

Histogram: Example



Example: a class of 13 students takes a quiz (out of 100 points) with the following results:

 $\{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}$



Descriptive Statistics

- We are often interested in the *shape* or *pattern* of a distribution, particularly:
 - $\circ~$ Measures of $\ensuremath{\textit{center}}$
 - Measures of **dispersion**
 - **Shape** of distribution

Measures of Center

Mode

- The mode of a variable is simply its most frequent value
- A variable can have multiple modes

Example: a class of 13 students takes a quiz (out of 100 points) with the following results: {0, 62, 66, **71**, **71**, 74, 76, 79, 83, 86, 88, 93, 95}

Mode

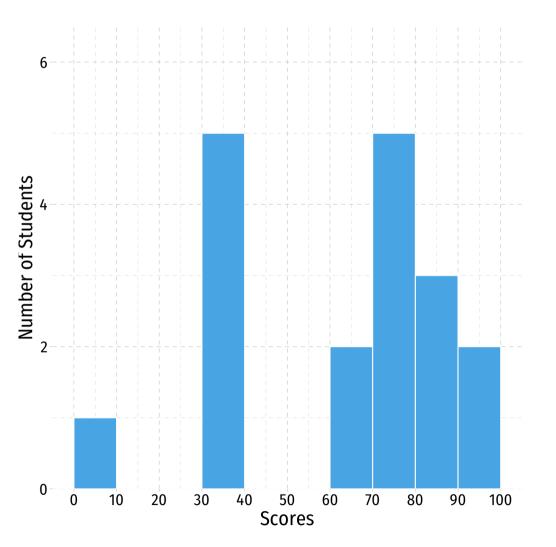
- There is no dedicated mode() function in R, surprisingly
- A workaround in dplyr:

quizzes %>%
 count(scores) %>%
 arrange(desc(n))

##	# A	tibble	5:	12	×	2
##		scores		r	ו	
##		<dbl></dbl>	<1	int:	>	
##	1	71		2	2	
##	2	Θ		1	L	
##	3	62		1	L	
##	4	66		1	L	
##	5	74		1	L	
##	6	76		1	L	
##	7	79		1	L	
##	8	83		1	L	
##	9	86		1	L	
##	10	88		1	L	
##	11	93		1	L	
##	12	95		1	L	

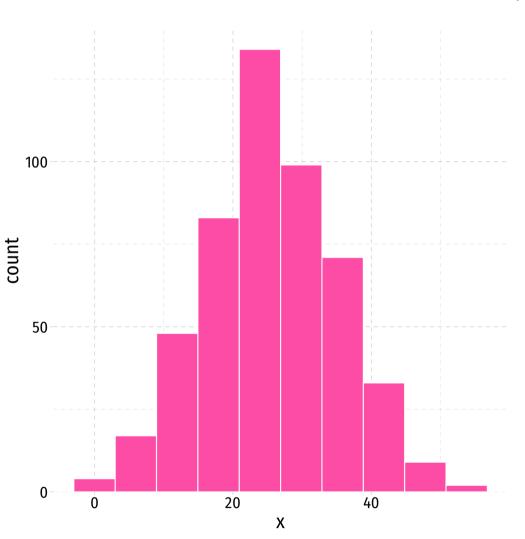
Multi-Modal Distributions

- Looking at a histogram, the modes are the "peaks" of the distribution
 - Note: depends on how wide you make the bins!
- May be unimodal, bimodal, trimodal, etc



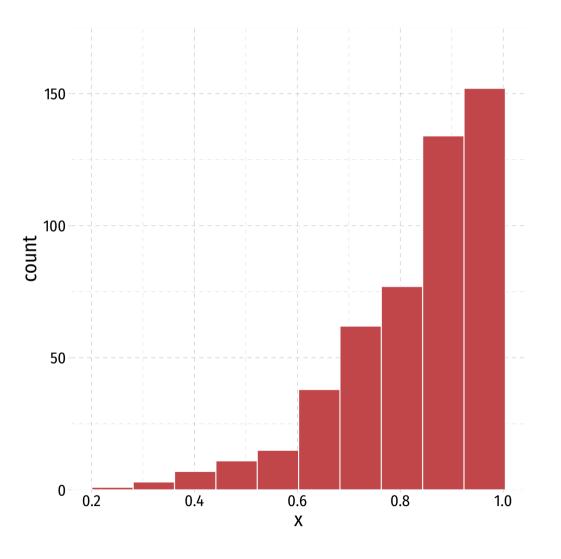
Symmetry and Skew I

- A distribution is **symmetric** if it looks roughly the same on either side of the "center"
- The thinner ends (far left and far right) are called the **tails** of a distribution



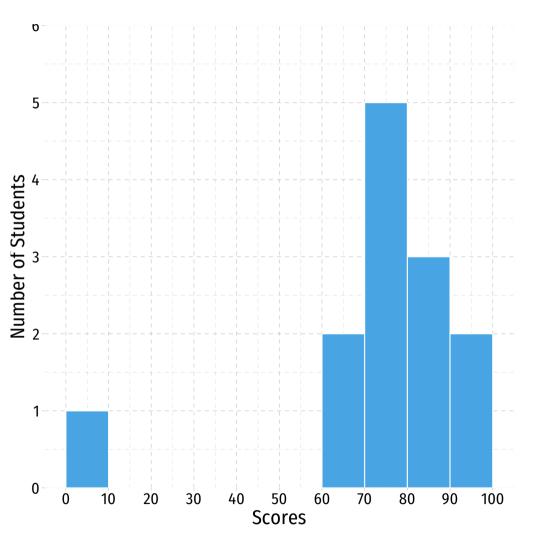
Symmetry and Skew I

• If one tail stretches farther than the other, distribution is **skewed** in the direction of the longer tail



Outliers

- Outlier: extreme value that does not appear part of the general pattern of a distribution
- Can strongly affect descriptive statistics
- Might be the most informative part of the data
- Could be the result of errors
- Should always be explored and discussed!



Arithmetic Mean (Population)

• The natural measure of the center of a *population*'s distribution is its "average" or arithmetic mean (μ)

$$\mu = \frac{x_1 + x_2 + \dots + x_N}{N} = \frac{1}{N} \sum_{i=1}^N x_i$$

- For N values of variable x, "mu" is the sum of all individual x values (x_i) from 1 to N, divided by the N number of values[†]
- See <u>today's class notes</u> for more about the **summation operator**, Σ , it'll come up again!

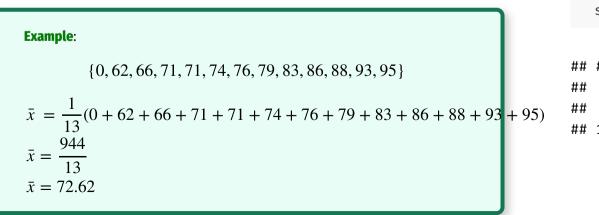
[†] Note the mean need not be an actual value of the data!

Arithmetic Mean (Sample)

• When we have a *sample*, we compute the **sample mean** (\bar{x})

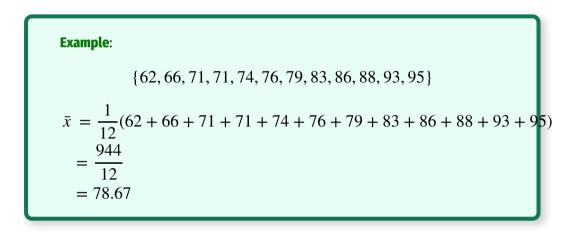
$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

• For *n* values of variable *x*, "x-bar" is the sum of all individual *x* values (*x_i*) divided by the *n* number of values



Arithmetic Mean: Affected by Outliers

• If we drop the outlier (0)



quizzes %>%
filter(scores>0) %>%
summarize(mean=mean(scores))

A tibble: 1 × 1
mean
<dbl>
1 78.7

$\{0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95\}$

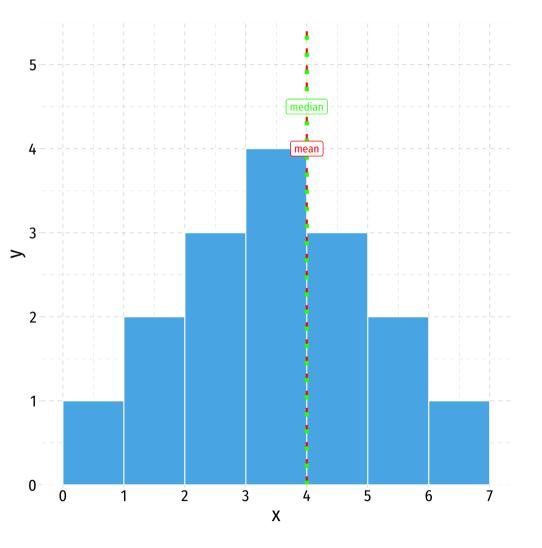
- The **median** is the midpoint of the distribution
 - $\circ~50\%$ to the left of the median, 50% to the right of the median
- Arrange values in numerical order
 - For odd *n*: median is middle observation
 - For even *n*: median is average of two middle observations

Mean, Median, and Outliers

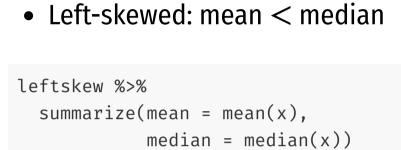
Mean, Median, Symmetry, Skew I

• Symmetric distribution: mean \approx median

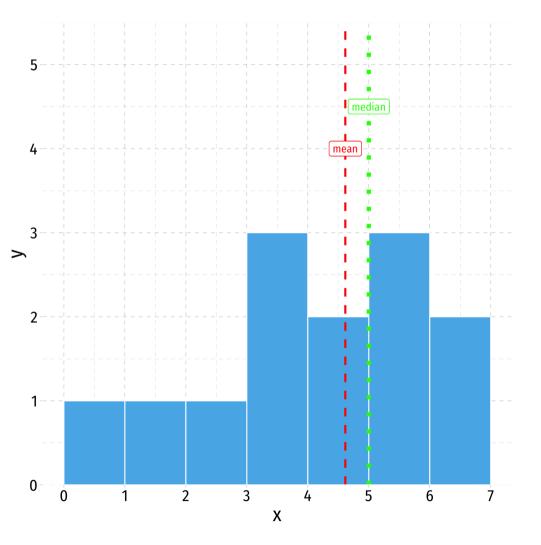
```
## # A tibble: 1 × 2
## mean median
## <dbl> <dbl>
## 1 4 4
```



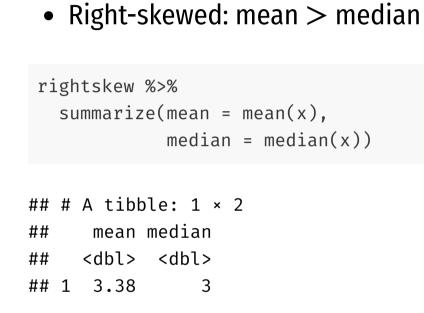
Mean, Median, Symmetry, Skew II

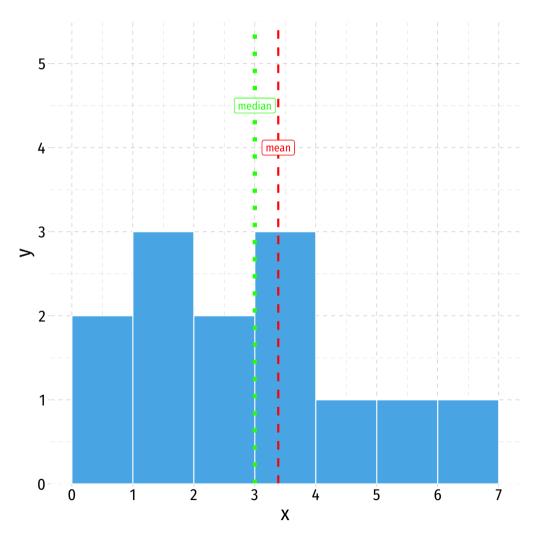


mean median ## 1 4.615385 5



Mean, Median, Symmetry, Skew III





Measures of Dispersion

Measures of Dispersion: Range

- The more *variation* in the data, the less helpful a measure of central tendency will tell us
- Beyond just the center, we also want to measure the spread
- Simplest metric is range = max min

Measures of Dispersion: 5 Number Summary I

• Common set of summary statistics of a distribution: "five number summary":

1. Minimum value

2. 25^{th} percentile (Q_1 , median of first 50% of data) 3. 50^{th} percentile (median, Q_2)

4. 25^{th} percentile (Q_3 , median of last 50% of data) 5. Maximum value # Base R summary command (includes Mean)
summary(quizzes\$scores)

##	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
##	0.00	71.00	76.00	72.62	86.00	95.00

```
quizzes %>% # dplyr
summarize(Min = min(scores),
    Q1 = quantile(scores, 0.25),
    Median = median(scores),
    Q3 = quantile(scores, 0.75),
    Max = max(scores))
```

##	#	A tib	ole: 1	× 5		
##		Min	Q1	Median	Q3	Max
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	Θ	71	76	86	95

Measures of Dispersion: 5 Number Summary II

• The *n*th percentile of a distribution is the value that places *n* percent of values beneath it

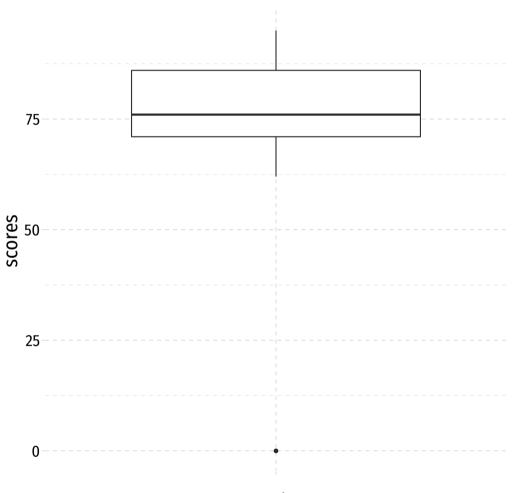
```
quizzes %>%
summarize("37th percentile" = quantile(scores,0.37))
## # A tibble: 1 × 1
```

```
## `37th percentile`
## <dbl>
```

```
## 1 72.3
```

Boxplots I

- **Boxplots** are a great way to visualize the 5 number summary
- **Height of box**: Q_1 to Q_3 (known as **interquartile range (IQR)**, middle 50% of data)
- **Line inside box**: median (50th percentile)
- "Whiskers" identify data within $1.5 \times IQR$
- Points *beyond* whiskers are **outliers**
 - common definition: $Outlier > 1.5 \times IQR$



Comparisons I

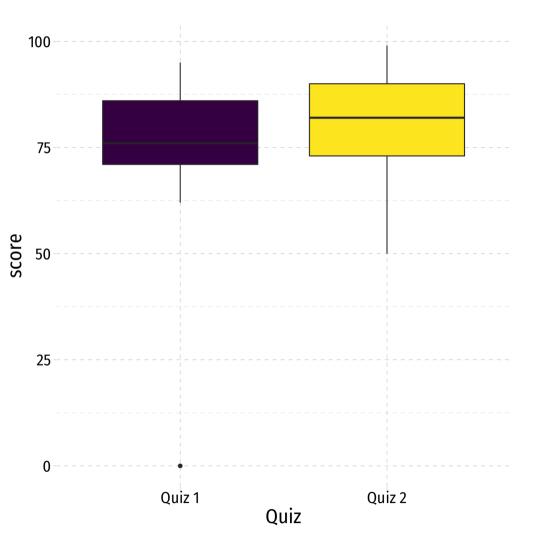
• Boxplots (and five number summaries) are great for comparing two distributions

Quiz 1 : {0, 62, 66, 71, 71, 74, 76, 79, 83, 86, 88, 93, 95} Quiz 2 : {50, 62, 72, 73, 79, 81, 82, 82, 86, 90, 94, 98, 99}

Comparisons II

quizzes_new %>% summary()

##	student	quiz_1	quiz_2
##	Min. : 1	Min. : 0.00	Min. :50.00
##	1st Qu.: 4	1st Qu.:71.00	1st Qu.:73.00
##	Median : 7	Median :76.00	Median :82.00
##	Mean : 7	Mean :72.62	Mean :80.62
##	3rd Qu.:10	3rd Qu.:86.00	3rd Qu.:90.00
##	Max. :13	Max. :95.00	Max. :99.00



Aside: Making Nice Summary Tables I

- I don't like the options available for printing out summary statistics
- So I wrote my own R function called summary_table() that makes nice summary tables (it uses dplyr and tidyr!). To use:
- 1. Download the summaries.R file from the website[†] and move it to your working directory/project folder
- 2. Load the function with the source() command:[‡]

source("summaries.R")

[†] One day I'll make this part of a package I'll write.

[‡] If it *was* a package, then you'd load with <code>library()</code>. But you can run a single **.**R script with <code>source()</code>.

Aside: Making Nice Summary Tables II

3) The function has at least 2 arguments: the data.frame (automatically piped in if you use the pipe!) and then all variables you want to summarize, separated by commas[†]

```
mpg %>%
  summary_table(hwy, cty, cyl)
```

## #	A tibble	: 3 × 9	9							
##	Variable	0bs	Min	Q1	Median	Q3	Max	Mean	`Std.	Dev.`
##	<chr></chr>	<dbl></dbl>		<dbl></dbl>						
## 1	cty	234	9	14	17	19	35	16.9		4.26
## 2	cyl	234	4	4	6	8	8	5.89		1.61
## 3	hwy	234	12	18	24	27	44	23.4		5.95

⁺ There is one restriction: No variable name can have an underscore (_) in it. You will have to rename them or else you will break the function!

Aside: Making Nice Summary Tables II

4) When knitted in R markdown, it looks nicer:

```
mpg %>%
  summary_table(hwy, cty, cyl) %>%
  knitr::kable(., format="html")
```

Variable	Obs	Min	Q1	Median	Q3	Max	Mean	Std. Dev.
cty	234	9	14	17	19	35	16.86	4.26
cyl	234	4	4	6	8	8	5.89	1.61
hwy	234	12	18	24	27	44	23.44	5.95

• We'll talk more about using markdown and making final products nicer when we discuss your paper project (have you forgotten?)

Measures of Dispersion: Deviations

• Every observation *i* deviates from the mean of the data:

*deviation*_{*i*} = $x_i - \mu$

- There are as many deviations as there are data points (n)
- We can measure the *average* or **standard deviation** of a variable from its mean
- Before we get there...

Variance (Population)

• The **population variance** (σ^2) of a *population* distribution measures the average of the *squared* deviations from the *population* mean (μ)

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

- Why do we square deviations?
- What are these units?

Standard Deviation (Population)

- Square root the variance to get the **population standard deviation** (σ), the average deviation from the population mean (in same units as x)

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Variance (Sample)

• The sample variance (s^2) of a sample distribution measures the average of the squared deviations from the sample mean (\bar{x})

$$\sigma^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

• Why do we divide by n - 1?

Standard Deviation (Sample)

• Square root the sample variance to get the **sample standard deviation** (*s*), the average deviation from the *sample* mean (in same units as *x*)

$$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2}$$

Sample Standard Deviation: Example

Example: Calculate the sample standard deviation for the following series:

 $\{2, 4, 6, 8, 10\}$

sd(c(2,4,6,8,10))

[1] 3.162278

The Steps to Calculate sd(), Coded I

```
# first let's save our data in a tibble
sd_example<-tibble(x=c(2,4,6,8,10))</pre>
```

```
# first find the mean (just so we know)
```

```
sd_example %>%
summarize(mean(x))
```

```
## # A tibble: 1 × 1
## `mean(x)`
## <dbl>
## 1 6
```

The Steps to Calculate sd(), Coded II

sd_example # see what we made

	ole: 5 × 3	A tibb	#	##
deviations_	deviations	х		##
> <db< td=""><td><dbl></dbl></td><td><dbl></dbl></td><td></td><td>##</td></db<>	<dbl></dbl>	<dbl></dbl>		##
ŀ	- 4	2	1	##
2	-2	4	2	##
)	Θ	6	3	##
2	2	8	4	##
ŀ	4	10	5	##

The Steps to Calculate sd(), Coded III

## #	A tibble: 1	× 3	
##	sum_sq_devs	variance	std_dev
##	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
## 1	40	10	3.16

Sample Standard Deviation: You Try

You Try: Calculate the sample standard deviation for the following series:

 $\{1, 3, 5, 7\}$

sd(c(1,3,5,7))

[1] 2.581989

Descriptive Statistics: Populations vs. Samples

Population parameters

- Population size: ${\cal N}$
- **Mean**: *µ*

• Variance:
$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

• Standard deviation: $\sigma = \sqrt{\sigma^2}$

Sample statistics

- Population size: *n*
- Mean: \bar{x}

• Variance:
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

• Standard deviation: $s = \sqrt{s^2}$