2.1- Data 101 \& Descriptive Statistics

ECON 480 • Econometrics • Fall 2021 Ryan Safner
Assistant Professor of Economics
, safner@hood.edu
© ryansafner/metricsF21
Q metricsF21.classes.ryansafner.com

Outline

The Two Big Problems with Data
Data 101
Descriptive Statistics
Measures of Center
Measures of Dispersion

The Two Big Problems with Data

Two Big Problems with Data

- We want to use econometrics to identify causal relationships and make inferences about them

1. Problem for identification: endogeneity
2. Problem for inference: randomness

Identification Problem: Endogeneity

- An independent variable (X) is exogenous if its variation is unrelated to other factors that affect the dependent variable (Y)
- An independent variable (X) is endogenous if its variation is related to other factors that affect the dependent
 variable (Y)
- Note: unfortunately this is different from how economists talk about endogenous

Identification Problem: Endogeneity

- An independent variable (X) is exogenous if its variation is unrelated to other factors that affect the dependent variable (Y)

X causes Y

X and Z (independently) cause Y

Identification Problem: Endogeneity

- An independent variable (X) is endogenous if its variation is related to other factors that affect the dependent variable (Y), e.g. Z

Inference Problem: Randomness

- Data is random due to natural sampling variation
- Taking one sample of a population will yield slightly different information than another sample of the same population
- Common in statistics, easy to fix
- Inferential Statistics: making claims about a wider population using sample data
- We use common tools and techniques
 to deal with randomness

The Two Problems: Where We're Heading...Ultimately

```
Sample statistical inference 
```

- We want to identify causal relationships between population variables
- Logically first thing to consider
- Endogeneity problem
- We'll use sample statistics to infer something about population parameters
- In practice, we'll only ever have a finite sample distribution of data
- We don't know the population distribution of data
- Randomness problem

Data 101

Data 101

- Data are information with context
- Individuals are the entities described by a set of data
- e.g. persons, households, firms, countries

Data 101

- Variables are particular characteristics about an individual
- e.g. age, income, profits, population, GDP, marital status, type of legal institutions
- Observations or cases are the separate individuals described by a collection of variables
- e.g. for one individual, we have their age, sex, income, education, etc.
- individuals and observations are not necessarily
 the same:
- e.g. we can have multiple observations on the same individual over time

Categorical Data

- Categorical data place an individual into one of several possible categories
- e.g. sex, season, political party
- may be responses to survey questions
- can be quantitative (e.g. age, zip code)
- In R: character or factor type data
- factor \Longrightarrow specific possible categories

Categorical Data: Visualizing I

diamonds \%>\%

```
count(cut)
mutate(frequency = n / sum(n),
percent = round(frequency * 100, 2))
```

Summary of diamonds by cut

| cut | n frequency | | percent |
| :--- | ---: | ---: | ---: | ---: |
| Fair | 1610 | 0.0298480 | 2.98 |
| Good | 4906 | 0.0909529 | 9.10 |
| Very Good | 12082 | 0.2239896 | 22.40 |
| Premium | 13791 | 0.2556730 | 25.57 |
| Ideal | 21551 | 0.3995365 | 39.95 |

- Good way to represent categorical data is with a frequency table
- Count (n): total number of individuals in a category
- Frequency: proportion of a category's ocurrence relative to all data
- Multiply proportions by 100\% to get percentages

Categorical Data: Visualizing II

- Charts and graphs are always better ways to visualize data
- A bar graph represents categories as bars, with lengths proportional to the count or relative frequency of each category

```
```

ggplot(diamonds, aes(x=cut,

```
```

ggplot(diamonds, aes(x=cut,
fill=cut))+
fill=cut))+
geom_bar()+
geom_bar()+
guides(fill=F)+
guides(fill=F)+
theme_pander(base_family = "Fira Sans Condens
theme_pander(base_family = "Fira Sans Condens
base_size=20)

```
```

 base_size=20)
    ```
```

```
        5 0 0 0
```


Categorical Data: Visualizing III

- Avoid pie charts!
- People are not good at judging 2-d differences (angles, area)
- People are good at judging 1-d differences (length)

Categorical Data: Visualizing IV

- Maybe a stacked bar chart

```
diamonds %>%
    count(cut) %>%
ggplot(data = .)+
    aes(x = "",
        y = n)+
    geom_col(aes(fill = cut))+
    geom_label(aes(label = cut,
            color = cut),
        position = position_stack(vjust =
        )+
    guides(color = F,
        fill = F)+
    theme_void()
```


Categorical Data: Visualizing IV

- Maybe lollipop chart

```
diamonds %>%
    count(cut) %>%
    mutate(cut_name = as.factor(cut)) %>%
ggplot(., aes(x = cut_name, y = n, color = cut)
    geom_point(stat="identity",
            fill="black",
            size=12) +
    geom_segment(aes(x = cut_name, y = 0,
        xend = cut_name,
        yend = n), size = 2)+
    geom_text(aes(label = n),color="white", size=
    coord_flip()+
    labs(x = "Cut")+
    theme_pander(base_family = "Fira Sans Condens
        base_size=20)+
    guides(color = F)
```

Ideal

Categorical Data: Visualizing IV

- Maybe a treemap

```
```

library(treemapify)

```
```

library(treemapify)
diamonds %>%
diamonds %>%
count(cut) %>%
count(cut) %>%
ggplot(., aes(area = n, fill = cut)) +
ggplot(., aes(area = n, fill = cut)) +
geom_treemap() +
geom_treemap() +
guides(fill = FALSE)
guides(fill = FALSE)
geom_treemap_text(aes(label = cut),
geom_treemap_text(aes(label = cut),
colour = "white",
colour = "white",
place = "topleft",
place = "topleft",
grow = TRUE)

```
```

 grow = TRUE)
    ```
```


Quantitative Data I

- Quantitative variables take on numerical values of equal units that describe an individual
- Units: points, dollars, inches
- Context: GPA, prices, height
- We can mathematically manipulate only quantitative data
- e.g. sum, average, standard deviation
- In R: numeric type data

- integer if whole number
- double if has decimals

Discrete Data

- Discrete data are finite, with a countable number of alternatives
- Categorical: place data into categories
- e.g. letter grades: A, B, C, D, F
- e.g. class level: freshman, sophomore, junior, senior
- Quantitative: integers
- e.g. SAT Score, number of children, age (years)

Continuous Data

- Continuous data are infinitely divisible, with an uncountable number of alternatives
- e.g. weight, length, temperature, GPA
- Many discrete variables may be treated as if they are continuous
- e.g. SAT scores (whole points), wages (dollars and cents)

Spreadsheets

ID Name	Age Sex	Income	
1 John	23	Male	41000
2 Emile	18	Male	52600
3 Natalya	28	Female	48000
4 Lakisha	31	Female	60200
5 Cheng	36	Male	81900

- The most common data structure we use is a spreadsheet
- In R:a data.frame or tibble
- A row contains data about all variables for a single individual
- A column contains data about a single variable across all individuals

Spreadsheets

ID Name	Age Sex	Income	
1 John	23	Male	41000
2 Emile	18	Male	52600
3 Natalya	28	Female	48000
4 Lakisha	31	Female	60200
5 Cheng	36	Male	81900

- Each cell can be referenced by its row and column (in that order!), df[row, column]

```
example[3,2] # value in row 3, column 2
## # A tibble: 1 x 1
## Name
## <chr>
## 1 Natalya
```

- Recall how to "subset" data frames from 1.2; though it's now much easier with filter() and select()!

Spreadsheets II

- It is common to use some notation like the following:
- Let $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a simple data series on variable X
- n individual observations
- x_{i} is the value of the $i^{\text {th }}$ observation for $i=1,2, \cdots, n$

Quick Check: Let x represent the score on a homework assignment:

$$
75,100,92,87,79,0,95
$$

1. What is n ?
2. What is x_{1} ?
3. What is x_{6} ?

Datasets: Cross-Sectional

ID Name	Age Sex	Income	
1 John	23	Male	41000
2 Emile	18	Male	52600
3 Natalya	28	Female	48000
4 Lakisha	31	Female	60200
5 Cheng	36	Male	81900

- Cross-sectional data: observations of individuals at a given point in time
- Each observation is a unique individual

$$
x_{i}
$$

- Simplest and most common data
- A "snapshot" to compare differences across individuals

Datasets: Time-Series

Year	GDP	Unemployment	CPI
1950	8.2	0.06	100
1960	9.9	0.04	118
1970	10.2	0.08	130
1980	12.4	0.08	190
1985	13.6	0.06	196

- Time-series data: observations of the same individual(s) over time
- Each observation is a time period

$$
x_{t}
$$

- Often used for macroeconomics, finance, and forecasting
- Unique challenges for time series
- A "moving picture" to see how individuals change over time

Datasets: Panel

City	Year	Murders	Population	UR
Philadelphia	1986	5	3.700	8.7
Philadelphia	1990	8	4.200	7.2
D.C.	1986	2	0.250	5.4
D.C.	1990	10	0.275	5.5
New York	1986	3	6.400	9.6

- Panel, or longitudinal dataset: a timeseries for each cross-sectional entity
- Must be same individuals over time
- Each obs. is an individual in a time period

$$
x_{i t}
$$

- More common today for serious researchers; unique challenges and benefits
- A combination of "snapshot" comparisons over time

Descriptive Statistics

Variables and Distributions

- Variables take on different values, we can describe a variable's distribution (of these values)
- We want to visualize and analyze distributions to search for meaningful patterns using statistics

Two Branches of Statistics

- Two main branches of statistics:

1. Descriptive Statistics: describes or summarizes the properties of a sample
2. Inferential Statistics: infers properties about a larger population from the properties of a sample ${ }^{\dagger}$

${ }^{\dagger}$ We'll encounter inferential statistics mainly in the context of regression later.

Histograms

- A common way to present a quantitative variable's distribution is a histogram
- The quantitative analog to the bar graph for a categorical variable
- Divide up values into bins of a certain size, and count the number of values falling within each bin, representing them visually as bars

Histogram: Example

Example: a class of 13 students takes a quiz (out of 100 points) with the following results:
$\{0,62,66,71,71,74,76,79,83,86,88,9\}, 95\}$

Histogram: Example

Example: a class of 13 students takes a quiz (out of 100 points) with the following results:
$\{0,62,66,71,71,74,76,79,83,86,88,9\}, 95\}$
quizzes<-tibble(scores $=c(0,62,66,71,71,74,76,79,83,86,88,93$

Histogram: Example

0
Example: a class of 13 students takes a quiz (out of 100 points) with the following results:
$\{0,62,66,71,71,74,76,79,83,86,88,93,95\}$
$h<-g g p l o t(q u i z z e s$, aes ($\mathrm{x}=$ scores)) +
geom_histogram(breaks $=\operatorname{seq}(0,100,10)$,
color = "white",
fill = "\#56B4E9")+
scale_x_continuous(breaks $=\operatorname{seq}(0,100,10))+$
scale_y_continuous(limits $=c(0,6)$, expand $=c(0,0))+$
labs(x = "Scores",
$y=$ "Number of Students")+
ggthemes::theme_pander(base_family = "Fira Sans Condensed", base_size=20)

Descriptive Statistics

- We are often interested in the shape or pattern of a distribution, particularly:
- Measures of center
- Measures of dispersion
- Shape of distribution

Measures of Center

Mode

- The mode of a variable is simply its most frequent value
- A variable can have multiple modes

Example: a class of 13 students takes a quiz (out of 100 points) with the following results:

$$
\{0,62,66,71,71,74,76,79,83,86,88,93,95\}
$$

Mode

- There is no dedicated mode() function in R, surprisingly
- A workaround in dplyr:

```
quizzes %>%
    count(scores) %>%
    arrange(desc(n))
```

\#\# \#	A tibble:	12×2	
\#\#	scores	n	
\#\#		<dbl>	<int>
\#\#	1	71	2
\#\#	2	0	1
\#\#	3	62	1
\#\#	4	66	1
\#\#	5	74	1
\#\#	6	76	1
\#\#	7	79	1
\#\#	8	83	1
\#\#	9	86	1
\#\#	10	88	1
\#\#	11	93	1
\#\#	12	95	1

Multi-Modal Distributions

- Looking at a histogram, the modes are the "peaks" of the distribution
- Note: depends on how wide you make the bins!
- May be unimodal, bimodal, trimodal, etc

6

Symmetry and Skew I

- A distribution is symmetric if it looks roughly the same on either side of the "center"
- The thinner ends (far left and far right) are called the tails of a distribution

Symmetry and Skew I

- If one tail stretches farther than the other, distribution is skewed in the

Outliers

- Outlier: extreme value that does not appear part of the general pattern of a distribution
- Can strongly affect descriptive statistics
- Might be the most informative part of the data
- Could be the result of errors
- Should always be explored and discussed!

Arithmetic Mean (Population)

- The natural measure of the center of a population's distribution is its "average" or arithmetic mean (μ)

$$
\mu=\frac{x_{1}+x_{2}+\ldots+x_{N}}{N}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- For N values of variable x, "mu" is the sum of all individual x values $\left(x_{i}\right)$ from 1 to N, divided by the N number of values ${ }^{\dagger}$
- See today's class notes for more about the summation operator, Σ, it'll come up again!

[^0]
Arithmetic Mean (Sample)

- When we have a sample, we compute the sample mean (\bar{x})

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- For n values of variable x, "x-bar" is the sum of all individual x values $\left(x_{i}\right)$ divided by the n number of values

```
quizzes %>%
    summarize(mean=mean(scores))
```

Example:
$\{0,62,66,71,71,74,76,79,83,86,88,93,95\}$
$\bar{x}=\frac{1}{13}(0+62+66+71+71+74+76+79+83+86+88+93+95)$
$\bar{x}=\frac{944}{13}$
$\bar{x}=72.62$

Arithmetic Mean: Affected by Outliers

- If we drop the outlier (0)

Example:

$$
\{62,66,71,71,74,76,79,83,86,88,93,95\}
$$

$\bar{x}=\frac{1}{12}(62+66+71+71+74+76+79+83+86+88+93+95)$
$=\frac{944}{12}$
$=78.67$

```
quizzes %>%
    filter(scores>0) %>%
    summarize(mean=mean(scores))
## # A tibble: 1 x 1
## mean
## <dbl>
## 1 78.7
```


Median

$$
\{0,62,66,71,71,74,76,79,83,86,88,93,95\}
$$

- The median is the midpoint of the distribution
- 50% to the left of the median, 50% to the right of the median
- Arrange values in numerical order
- For odd n : median is middle observation
- For even n : median is average of two middle observations

Mean, Median, and Outliers

Mean, Median, Symmetry, Skew I

- Symmetric distribution: mean \approx median

```
symmetric %>%
    summarize(mean = mean(x),
## # A tibble: 1 x 2
## mean median
## <dbl> <dbl>
## 1 4 4
```

 median \(=\operatorname{median}(x))\)

Mean, Median, Symmetry, Skew II

- Left-skewed: mean < median

```
leftskew %>%
    summarize(mean = mean(x),
                            median = median(x))
```

\#\# mean median
\#\# 14.6153855

Mean, Median, Symmetry, Skew III

- Right-skewed: mean > median

```
rightskew %>%
    summarize(mean = mean(x),
## # A tibble: 1 x 2
## mean median
## <dbl> <dbl>
## 1 3.38 3
```

 median \(=\operatorname{median}(x))\)

Measures of Dispersion

Measures of Dispersion: Range

- The more variation in the data, the less helpful a measure of central tendency will tell us
- Beyond just the center, we also want to measure the spread
- Simplest metric is range $=$ max $-\min$

Measures of Dispersion: 5 Number Summary I

- Common set of summary statistics of a distribution: "five number summary":

1. Minimum value
2. $25^{\text {th }}$ percentile (Q_{1}, median of first 50% of data)
\# Base R summary command (includes Mean)
summary(quizzes\$scores)
3. $50^{\text {th }}$ percentile (median, Q_{2})
4. $25^{\text {th }}$ percentile (Q_{3}, median of last 50% of data)
5. Maximum value

\#\#	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
$\# \#$	0.00	71.00	76.00	72.62	86.00	95.00

```
quizzes %>% # dplyr
    summarize(Min = min(scores),
    Q1 = quantile(scores, 0.25),
    Median = median(scores),
    Q3 = quantile(scores, 0.75),
    Max = max(scores))
```

\#\# \# A tibble: 1×5					
\#\#	Min	Q1	Median	Q3	Max
\#\#	<dbl>	<dbl>	<dbl>	<dbl>	<dbl>
\#\#	1	0	71	76	86

Measures of Dispersion: 5 Number Summary II

- The $n^{\text {th }}$ percentile of a distribution is the value that places n percent of values beneath it

```
quizzes %>%
    summarize("37th percentile" = quantile(scores,0.37))
```

\#\# \# A tibble: 1×1
\#\# -37th percentile`
\#\# <dbl>
\#\# $1 \quad 72.3$

Boxplots I

- Boxplots are a great way to visualize the 5 number summary
- Height of box: Q_{1} to Q_{3} (known as
- Line inside box: median ($50^{\text {th }}$ percentile)
- "Whiskers" identify data within $1.5 \times I Q R$
- Points beyond whiskers are outliers
- common definition:

Outlier $>1.5 \times I Q R$

Comparisons I

- Boxplots (and five number summaries) are great for comparing two distributions

Example:

Quiz 1 : $\{0,62,66,71,71,74,76,79,83,86,88,93,95\}$
Quiz 2 : $\{50,62,72,73,79,81,82,82,86,90,94,98,99\}$

Comparisons II

\#\#	student	quiz_1	quiz_2
\#\#	Min. : 1	Min. : 0.00	Min. :50.00
\#\#	1st Qu.: 4	1st Qu.:71.00	1st Qu.:73.00
\#\#	Median : 7	Median :76.00	Median :82.00
\#\#	Mean : 7	Mean :72.62	Mean :80.62
\#\#	3rd Qu.:10	3rd Qu.:86.00	3rd Qu.:90.00
\#\#	Max. : 13	Max. 95.00	Max. :99.00

Aside: Making Nice Summary Tables I

- I don't like the options available for printing out summary statistics
- So I wrote my own R function called summary_table() that makes nice summary tables (it uses dplyr and tidyr !). To use:

1. Download the summaries. R file from the website ${ }^{\dagger}$ and move it to your working directory/project folder 2. Load the function with the source() command: \ddagger
```
source("summaries.R")
```

${ }^{\dagger}$ One day I'll make this part of a package I'll write.
\$ If it was a package, then you'd load with library (). But you can run a single . R script with source().

Aside: Making Nice Summary Tables II

3) The function has at least 2 arguments: the data. frame (automatically piped in if you use the pipe!) and then all variables you want to summarize, separated by commas ${ }^{\dagger}$
```
mpg %>%
    summary_table(hwy, cty, cyl)
## # A tibble: 3 x 9
```


[^1]
Aside: Making Nice Summary Tables II

4) When knit ted in R markdown, it looks nicer:
```
mpg %>%
    summary_table(hwy, cty, cyl) %>%
    knitr::kable(., format="html")
```

Variable	Obs	Min	Q1	Median	Q3	Max	Mean	Std. Dev.
cty	234	9	14	17	19	35	16.86	4.26
cyl	234	4	4	6	8	8	5.89	1.61
hwy	234	12	18	24	27	44	23.44	5.95

- We'll talk more about using markdown and making final products nicer when we discuss your paper project (have you forgotten?)

Measures of Dispersion: Deviations

- Every observation i deviates from the mean of the data:

$$
\text { deviation }_{i}=x_{i}-\mu
$$

- There are as many deviations as there are data points (n)
- We can measure the average or standard deviation of a variable from its mean
- Before we get there...

Variance (Population)

- The population variance (σ^{2}) of a population distribution measures the average of the squared deviations from the population mean (μ)

$$
\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}
$$

- Why do we square deviations?
- What are these units?

Standard Deviation (Population)

- Square root the variance to get the population standard deviation (σ), the average deviation from the population mean (in same units as x)

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}
$$

Variance (Sample)

- The sample variance $\left(s^{2}\right)$ of a sample distribution measures the average of the squared deviations from the sample mean (\bar{x})

$$
\sigma^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- Why do we divide by $n-1$?

Standard Deviation (Sample)

- Square root the sample variance to get the sample standard deviation (s), the average deviation from the sample mean (in same units as x)

$$
s=\sqrt{s^{2}}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

Sample Standard Deviation: Example

Example: Calculate the sample standard deviation for the following series:

$$
\{2,4,6,8,10\}
$$

$$
\operatorname{sd}(c(2,4,6,8,10))
$$

\#\# [1] 3.162278

The Steps to Calculate sd(), Coded I

```
# first let's save our data in a tibble
sd_example<-tibble(x=c(2,4,6,8,10))
# first find the mean (just so we know)
sd_example %>%
    summarize(mean(x))
## # A tibble: 1 x 1
## `mean(x)`
## <dbl>
## 1
    6
# now let's make some more columns:
sd_example <- sd_example %>%
    mutate(deviations = x-mean(x), # take deviations from mean
            deviations_sq = deviations^2) # square them
```


The Steps to Calculate sd(), Coded II

sd_example \# see what we made

\#\# \# A tibble: 5×3			
\#\#	x deviations deviations_sq		
\#\#	<dbl>	<dbl>	<dbl>
\#\# 1	2	-4	16
\#\# 2	4	-2	4
\#\# 3	6	0	0
\#\# 4	8	2	4
\#\# 5	10	4	16

The Steps to Calculate sd(), Coded III

```
sd_example %>%
    # sum the squared deviations
    summarize(sum_sq_devs = sum(deviations_sq),
    # divide by n-1 to get variance
    variance = sum_sq_devs/(n()-1),
    # square root to get sd
    std_dev = sqrt(variance))
```

\#\# \# A tibble: 1×3

\#\# \# A tibble: 1×3			
\#\#	sum_sq_devs	variance	std_dev
\#\#	<dbl>	<dbl>	<dbl>
\#\# 1	40	10	3.16

Sample Standard Deviation: You Try

You Try: Calculate the sample standard deviation for the following series:

$$
\{1,3,5,7\}
$$

```
sd(c(1,3,5,7))
\#\# [1] 2.581989
```


Descriptive Statistics: Populations vs. Samples

Population parameters

- Population size: N
- Mean: μ
- Variance: $\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}$
- Standard deviation: $\sigma=\sqrt{\sigma^{2}}$

Sample statistics

- Population size: n
- Mean: \bar{x}
- Variance: $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
- Standard deviation: $s=\sqrt{s^{2}}$

[^0]: ${ }^{\dagger}$ Note the mean need not be an actual value of the data!

[^1]: ${ }^{\dagger}$ There is one restriction: No variable name can have an underscore (_) in it. You will have to rename them or else you will break the function!

