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Exploring Relationships



We looked at single variables for
descriptive statistics
Most uses of statistics in economics and
business investigate relationships between
variables

Examples

# of police & crime rates
healthcare spending & life expectancy
government spending & GDP growth
carbon dioxide emissions &
temperatures

Bivariate Data and Relationships



We will begin with bivariate data for
relationships between  and 

Immediate aim is to explore associations
between variables, quanti�ed with
correlation and linear regression

Later we want to develop more
sophisticated tools to argue for
causation

Bivariate Data and Relationships

X Y



econfreedom <- read_csv("econfreedom.csv")
head(econfreedom)

## # A tibble: 6 × 6
##    ...1 Country   ISO      ef    gdp continent
##   <dbl> <chr>     <chr> <dbl>  <dbl> <chr>    
## 1     1 Albania   ALB    7.4   4543. Europe   
## 2     2 Algeria   DZA    5.15  4784. Africa   
## 3     3 Angola    AGO    5.08  4153. Africa   
## 4     4 Argentina ARG    4.81 10502. Americas 
## 5     5 Australia AUS    7.93 54688. Oceania  
## 6     6 Austria   AUT    7.56 47604. Europe

Bivariate Data: Spreadsheets I

Rows are individual observations (countries)
Columns are variables on all individuals



Bivariate Data: Spreadsheets II
econfreedom %>%
  glimpse()

## Rows: 112
## Columns: 6
## $ ...1      <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 1…
## $ Country   <chr> "Albania", "Algeria", "Angola", "Argentina", "Australia", "A…
## $ ISO       <chr> "ALB", "DZA", "AGO", "ARG", "AUS", "AUT", "BHR", "BGD", "BEL…
## $ ef        <dbl> 7.40, 5.15, 5.08, 4.81, 7.93, 7.56, 7.60, 6.35, 7.51, 6.22, …
## $ gdp       <dbl> 4543.0880, 4784.1943, 4153.1463, 10501.6603, 54688.4459, 476…
## $ continent <chr> "Europe", "Africa", "Africa", "Americas", "Oceania", "Europe…



Bivariate Data: Spreadsheets III
source("summaries.R") # use my summary_table function

econfreedom %>%
    summary_table(ef, gdp)

Variable Obs Min Q1 Median Q3 Max Mean Std. Dev.

ef 112 4.81 6.42 7.0 7.40 8.71 6.86 0.78

gdp 112 206.71 1307.46 5123.3 17302.66 89590.81 14488.49 19523.54



The best way to visualize an association
between two variables is with a
scatterplot

Each point: pair of variable values 
 for observation 

ggplot(data = econfreedom)+
  aes(x = ef,
      y = gdp)+
  geom_point(aes(color = continent),
             size = 2)+
  labs(x = "Economic Freedom Index (2014)",
       y = "GDP per Capita (2014 USD)",
       color = "")+
  scale_y_continuous(labels = scales::dollar)+
  theme_pander(base_family = "Fira Sans Condensed",
           base_size=20)+
  theme(legend.position = "bottom")

Bivariate Data: Scatterplots

( , ) ∈ X, Yxi yi i



Look for association between
independent and dependent variables

�. Direction: is the trend positive or
negative?

�. Form: is the trend linear, quadratic,
something else, or no pattern?

�. Strength: is the association strong or
weak?

�. Outliers: do any observations break the
trends above?

Associations



Quantifying Relationships



Covariance
For any two variables, we can measure their sample covariance,  or  to
quantify how they vary together

Intuition: if  is above the mean of , would we expect the associated :
to be above the mean of  also  and  covary positively)
to be below the mean of   and  covary negatively)

Covariance is a common measure, but the units are meaningless, thus we rarely need to use
it so don't worry about learning the formula

cov(X, Y) sX,Y

†

= E[(X − )(Y − )]sX,Y X̄ Ȳ

xi X yi

Y (X Y

Y (X Y

 Henceforth we limit all measures to samples, for convenience. Population covariance is denoted †
σX,Y



Covariance, in R
# base R 
cov(econfreedom$ef,econfreedom$gdp)

## [1] 8922.933

# tidyverse 

econfreedom %>%
  summarize(cov = cov(ef,gdp))

## # A tibble: 1 × 1
##     cov
##   <dbl>
## 1 8923.

8923 what, exactly?



Correlation
More convenient to standardize covariance into a more intuitive concept: correlation,  or  

Simply weight covariance by the product of the standard deviations of  and 

Alternatively, take the average  of the product of standardized -scores for) each  pair:

ρ r ∈ [−1, 1]

= =rX,Y

sX,Y

sXsY

cov(X, Y)

sd(X)sd(Y)

X Y

† (Z ( , )xi yi
‡

r

r

= ( )( )
1

n − 1 ∑
i=1

n
−xi X̄

sX

−yi Ȳ

sY

=
1

n − 1 ∑
i=1

n

ZXZY Over n-1, a sample statistic!

 See today's class notes page for example code to calculate correlation "by hand" in R using the second method.

†

‡

https://metricsf21.classes.ryansafner.com/content/2.3-content#math-appendix


Correlation is standardized to

Negative values  negative association

Positive values  positive association

Correlation of 0  no association

As  the stronger the
association

Correlation of  perfectly
linear

Correlation: Interpretation

−1 ≤ r ≤ 1

⟹

⟹

⟹

|r| → 1 ⟹

|r| = 1 ⟹



Guess the Correlation!

Guess the Correlation Game

http://guessthecorrelation.com/index.html


# Base r: cov or cor(df$x, df$y)

cov(econfreedom$ef, econfreedom$gdp)

## [1] 8922.933

cor(econfreedom$ef, econfreedom$gdp)

## [1] 0.5867018

# tidyverse method 

econfreedom %>%
  summarize(covariance = cov(ef, gdp),
            correlation = cor(ef, gdp))

## # A tibble: 1 × 2
##   covariance correlation
##        <dbl>       <dbl>
## 1      8923.       0.587

Correlation and Covariance in R



Correlation and Covariance in R I
corrplot  is a great package (install and then load) to visualize correlations in data

library(corrplot) # see more at https://github.com/taiyun/corrplot
library(RColorBrewer) # for color scheme used here
library(gapminder) # for gapminder data

# need to make a corelation matrix with cor(); can only include numeric variables
gapminder_cor<- gapminder %>%
  dplyr::select(gdpPercap, pop, lifeExp)

# make a correlation table with cor (base R)
gapminder_cor_table<-cor(gapminder_cor)

# view it
gapminder_cor_table

##             gdpPercap         pop    lifeExp
## gdpPercap  1.00000000 -0.02559958 0.58370622
## pop       -0.02559958  1.00000000 0.06495537
## lifeExp    0.58370622  0.06495537 1.00000000



Correlation and Covariance in R II

corrplot(gapminder_cor_table, type="upper", 
         method = "circle", 
         order = "alphabet", 
         col = viridis::viridis(100)) # custom 



Your Occasional Reminder: Correlation
does not imply causation!

I'll show you the difference in a few
weeks (when we can actually talk
about causation)

If  and  are strongly correlated,  can
still be endogenous!

See today's class notes page for more on
Covariance and Correlation

Correlation and Endogeneity

X Y X

https://metricsf21.classes.ryansafner.com/content/2.3-content#math-appendix


Always Plot Your Data!



Linear Regression



If an association appears linear, we can estimate
the equation of a line that would “�t” the data

Recall a linear equation describing a line
contains:

: vertical intercept
: slope

Fitting a Line to Data

Y = a + bX

a

b



If an association appears linear, we can estimate
the equation of a line that would “�t” the data

Recall a linear equation describing a line
contains:

: vertical intercept
: slope

How do we choose the equation that best �ts
the data?

Fitting a Line to Data

Y = a + bX

a

b



If an association appears linear, we can estimate
the equation of a line that would “�t” the data

Recall a linear equation describing a line
contains:

: vertical intercept
: slope

How do we choose the equation that best �ts
the data?

This process is called linear regression

Fitting a Line to Data

Y = a + bX

a

b



Population Linear Regression Model
Linear regression lets us estimate the slope of the population regression line between 
and  using sample data

We can make statistical inferences about the population slope coef�cient

eventually & hopefully: a causal inference

: for a 1-unit change in , how many units will this cause  to change?

X

Y

slope = ΔY

ΔX
X Y



Example: What is the relationship
between class size and educational
performance?

Class Size Example



Class Size Example: Load the Data
# install.packages("haven") # install for first use
library("haven") # load for importing .dta files
CASchool<-read_dta("../data/caschool.dta")



Class Size Example: Look at the Data I
glimpse(CASchool)

## Rows: 420
## Columns: 21
## $ observat <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18…
## $ dist_cod <dbl> 75119, 61499, 61549, 61457, 61523, 62042, 68536, 63834, 62331…
## $ county   <chr> "Alameda", "Butte", "Butte", "Butte", "Butte", "Fresno", "San…
## $ district <chr> "Sunol Glen Unified", "Manzanita Elementary", "Thermalito Uni…
## $ gr_span  <chr> "KK-08", "KK-08", "KK-08", "KK-08", "KK-08", "KK-08", "KK-08"…
## $ enrl_tot <dbl> 195, 240, 1550, 243, 1335, 137, 195, 888, 379, 2247, 446, 987…
## $ teachers <dbl> 10.90, 11.15, 82.90, 14.00, 71.50, 6.40, 10.00, 42.50, 19.00,…
## $ calw_pct <dbl> 0.5102, 15.4167, 55.0323, 36.4754, 33.1086, 12.3188, 12.9032,…
## $ meal_pct <dbl> 2.0408, 47.9167, 76.3226, 77.0492, 78.4270, 86.9565, 94.6237,…
## $ computer <dbl> 67, 101, 169, 85, 171, 25, 28, 66, 35, 0, 86, 56, 25, 0, 31, …
## $ testscr  <dbl> 690.80, 661.20, 643.60, 647.70, 640.85, 605.55, 606.75, 609.0…
## $ comp_stu <dbl> 0.34358975, 0.42083332, 0.10903226, 0.34979424, 0.12808989, 0…
## $ expn_stu <dbl> 6384.911, 5099.381, 5501.955, 7101.831, 5235.988, 5580.147, 5…
## $ str      <dbl> 17.88991, 21.52466, 18.69723, 17.35714, 18.67133, 21.40625, 1…
## $ avginc   <dbl> 22.690001, 9.824000, 8.978000, 8.978000, 9.080333, 10.415000,…
## $ el_pct   <dbl> 0.000000, 4.583333, 30.000002, 0.000000, 13.857677, 12.408759…



Class Size Example: Look at the Data II
observat dist_cod county district gr_span enrl_tot teachers calw_pct meal_pct computer testscr comp_stu expn_stu str avginc el_pct read_scr math_scr aowijef es_pct es_frac

1 75119 Alameda Sunol Glen Uni�ed KK-08 195 10.90 0.5102 2.0408 67 690.80 0.3435898 6384.911 17.88991 22.690001 0.000000 691.6 690.0 35.77982 1.000000 0.0100000

2 61499 Butte Manzanita Elementary KK-08 240 11.15 15.4167 47.9167 101 661.20 0.4208333 5099.381 21.52466 9.824000 4.583334 660.5 661.9 43.04933 3.583334 0.0358333

3 61549 Butte Thermalito Union Elementary KK-08 1550 82.90 55.0323 76.3226 169 643.60 0.1090323 5501.955 18.69723 8.978000 30.000002 636.3 650.9 37.39445 29.000002 0.2900000

4 61457 Butte Golden Feather Union Elementary KK-08 243 14.00 36.4754 77.0492 85 647.70 0.3497942 7101.831 17.35714 8.978000 0.000000 651.9 643.5 34.71429 1.000000 0.0100000

5 61523 Butte Palermo Union Elementary KK-08 1335 71.50 33.1086 78.4270 171 640.85 0.1280899 5235.988 18.67133 9.080333 13.857677 641.8 639.9 37.34266 12.857677 0.1285768

6 62042 Fresno Burrel Union Elementary KK-08 137 6.40 12.3188 86.9565 25 605.55 0.1824818 5580.147 21.40625 10.415000 12.408759 605.7 605.4 42.81250 11.408759 0.1140876



Class Size Example: Scatterplot

scatter <- ggplot(data = CASchool)+
  aes(x = str,
      y = testscr)+
  geom_point(color = "blue")+
  labs(x = "Student to Teacher Ratio",
       y = "Test Score")+
  theme_pander(base_family = "Fira Sans Condensed",
           base_size = 20)
scatter



If we change  the class size by an
amount, what would we expect the change
in test scores to be?

If we knew , we could say that changing
class size by 1 student will change test
scores by 

Class Size Example: Slope I

(Δ)

β = =
change in test score

change in class size

Δtest score

Δclass size

β

β



Rearranging:

Class Size Example: Slope II

Δtest score = β × Δclass size



Rearranging:

Suppose . If we shrank class
size by 2 students, our model predicts:

Class Size Example: Slope II

Δtest score = β × Δclass size

β = −0.6

Δtest score

Δtest score

Δtest score

= −2 × β

= −2 × −0.6

= 1.2



The line relating class size and test scores
has the above equation

 is the vertical-intercept, test score
where class size is 0

 is the slope of the regression line

This relationship only holds on average for
all districts in the population, individual
districts are also affected by other factors

Class Size Example: Slope and Average Effect

test score = + × class sizeβ0 β1

β0

β1



To get an equation that holds for each
district, we need to include other factors

For now, we will ignore these until Unit III

Thus,  gives the
average effect of class sizes on scores

Later, we will want to estimate the marginal
effect (causal effect) of each factor on an
individual district's test score, holding all
other factors constant

Class Size Example: Marginal Effects

test score = + class size + other factorsβ0 β1

+ class sizeβ0 β1



Econometric Models Overview

 is the dependent variable of interest
AKA “response variable,” “regressand,” “Left-hand side (LHS) variable”

 and  are independent variables
AKA “explanatory variables”, “regressors,” “Right-hand side (RHS) variables”, “covariates”

Our data consists of a spreadsheet of observed values of 

To model, we “regress Y on  and ”

 and  are parameters that describe the population relationships between the variables
unknown! to be estimated

 is a random error term
‘U’nobservable, we can't measure it, and must model with assumptions about it

Y = + + + uβ0 β1X1 β2X2

Y

X1 X2

( , , )X1i X2i Yi

X1 X2

β0 β1

u



How do we draw a line through the
scatterplot? We do not know the “true” 

 or 

We do have data from a sample of class
sizes and test scores

So the real question is, how can we
estimate  and ?

 Data are student-teacher-ratio and average test scores on
Stanford 9 Achievement Test for 5th grade students for 420 K-6
and K-8 school districts in California in 1999, (Stock and Watson,
2015: p. 141)

The Population Regression Model

β0 β1

†

β0 β1

†



Deriving OLS



Suppose we have some data points

Deriving OLS



Suppose we have some data points
We add a line

Deriving OLS



Suppose we have some data points
We add a line
The residual,  of each data point is the
difference between the actual and the predicted
value of  given :

Deriving OLS

uî

Y X

= −uî Yi Yi
^



Suppose we have some data points
We add a line
The residual,  of each data point is the
difference between the actual and the predicted
value of  given :

We square each residual

Deriving OLS

uî

Y X

= −uî Yi Yi
^



Suppose we have some data points
We add a line
The residual,  of each data point is the
difference between the actual and the predicted
value of  given :

We square each residual
Add all of these up: Sum of Squared Errors (SSE)

Deriving OLS

uî

Y X

= −uî Yi Yi
^

SSE = ∑
i=1

n

uî

2



Suppose we have some data points
We add a line
The residual,  of each data point is the
difference between the actual and the predicted
value of  given :

We square each residual
Add all of these up: Sum of Squared Errors (SSE)

The line of best �t minimizes SSE

Deriving OLS

uî

Y X

= −uî Yi Yi
^

SSE = ∑
i=1

n

uî

2



O rdinary L east S quares Estimators
The Ordinary Least Squares (OLS) estimators of the unknown population parameters 
and , solve the calculus problem:

Intuitively, OLS estimators minimize the average squared distance between the actual
values  and the predicted values  along the estimated regression line

β0

β1

[min
,β

0
β
1

∑
i=1

n

− ( )Yi +β0 β1Xi
  

Yi
^

  

ui
^

]2

( )Yi ( )Y ̂ 
i



The OLS Regression Line
The OLS regression line or sample regression line is the linear function constructed using
the OLS estimators:

 and  (“beta 0 hat” & “beta 1 hat”) are the OLS estimators of population parameters 
and  using sample data

The predicted value of Y given X, based on the regression, is 

The residual or prediction error for the  observation is the difference between observed 

 and its predicted value, 

= +Yi
^ β0

^ β1
^

Xi

β0
^ β1

^ β0

β1

E( | ) =Yi Xi Yi
^

ith

Yi = −uî Yi Yi
^



The OLS Regression Estimators
The solution to the SSE minimization problem yields:†

= −β ̂ 
0 Ȳ β1

^
X̄

= = =β ̂ 
1

( − )( − )∑
i=1

n

Xi X̄ Yi Ȳ

( −∑
i=1

n

Xi X̄)2

sXY

s2
X

cov(X, Y)

var(X)

 See next class’ notes page for proofs.†

https://metricsf21.classes.ryansafner.com/content/2.4-content


Our Class Size Example in R



scatter

There is some true (unknown) population
relationship:

Class Size Scatterplot (Again)

test score = + × strβ0 β1

= =??β1
Δtest score

Δstr



  geom_smooth(method = "lm", color = "red")

Class SIze Scatterplot with Regression Line

scatter+



# run regression of testscr on str
school_reg <- lm(testscr ~ str, 
                 data = CASchool)

Format for regression is lm(y ~ x, data = df)

y  is dependent variable (listed �rst!)

~  means “is modeled by” or “is by”

x  is the independent variable

df  is name of dataframe where data is stored

This is Base R  (there's no good tidyverse  way to do
this yet...ish)

OLS in R



# look at reg object
school_reg

## 
## Call:
## lm(formula = testscr ~ str, data = CASchool)
## 
## Coefficients:
## (Intercept)          str  
##      698.93        -2.28

Stored as an lm  object called school_reg , a
type of list  object

OLS in R II



Looking at the summary , there's a lot of
information here!

These objects are cumbersome, come from
a much older, pre-tidyverse  epoch of
base R

Luckily, we now have tidy  ways of
working with regression output!

summary(school_reg) # get full summary

## 
## Call:
## lm(formula = testscr ~ str, data = CASchool)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -47.727 -14.251   0.483  12.822  48.540 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 698.9330     9.4675  73.825  < 2e-16 ***
## str          -2.2798     0.4798  -4.751 2.78e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.58 on 418 degrees of freedom
## Multiple R-squared:  0.05124,    Adjusted R-squared:  0.04897 
## F-statistic: 22.58 on 1 and 418 DF,  p-value: 2.783e-06

OLS in R III



The broom  package allows us to tidy up regression objects

The tidy()  function creates a tidy tibble  of regression
output

# load packages
library(broom)

# tidy regression output
tidy(school_reg)

## # A tibble: 2 × 5
##   term        estimate std.error statistic   p.value
##   <chr>          <dbl>     <dbl>     <dbl>     <dbl>
## 1 (Intercept)   699.       9.47      73.8  6.57e-242
## 2 str            -2.28     0.480     -4.75 2.78e-  6

Tidy OLS in R: broom I

 See more at broom.tidyverse.org.†

†

https://broom.tidyverse.org/


The broom  package allows us to tidy up regression objects

The tidy()  function creates a tidy tibble  of regression
output

     conf.int = TRUE)

## # A tibble: 2 × 7
##   term        estimate std.error statistic   p.value conf.low conf.high
##   <chr>          <dbl>     <dbl>     <dbl>     <dbl>    <dbl>     <dbl>
## 1 (Intercept)   699.       9.47      73.8  6.57e-242   680.      718.  
## 2 str            -2.28     0.480     -4.75 2.78e-  6    -3.22     -1.34

Tidy OLS in R: broom II

 See more at broom.tidyverse.org.†

†

# load packages
library(broom)

# tidy regression output (with confidence intervals!)
tidy(school_reg,

https://broom.tidyverse.org/


More broom Tools: glance
glance()  shows us a lot of overall regression statistics and diagnostics

We'll interpret these in the next lecture and beyond

# look at regression statistics and diagnostics
glance(school_reg)

## # A tibble: 1 × 12
##   r.squared adj.r.squared sigma statistic    p.value    df logLik   AIC   BIC
##       <dbl>         <dbl> <dbl>     <dbl>      <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1    0.0512        0.0490  18.6      22.6 0.00000278     1 -1822. 3650. 3663.
## # … with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>



augment()  creates useful new
variables in the stored lm  object

.fitted  are �tted (predicted)
values from model, i.e. 
.resid  are residuals (errors) from
model, i.e. 

# add regression-based values to data
augment(school_reg)

## # A tibble: 420 × 8
##    testscr   str .fitted .resid    .hat .sigma  .cooksd .std.resid
##      <dbl> <dbl>   <dbl>  <dbl>   <dbl>  <dbl>    <dbl>      <dbl>
##  1    691.  17.9    658.   32.7 0.00442   18.5 0.00689       1.76 
##  2    661.  21.5    650.   11.3 0.00475   18.6 0.000893      0.612
##  3    644.  18.7    656.  -12.7 0.00297   18.6 0.000700     -0.685
##  4    648.  17.4    659.  -11.7 0.00586   18.6 0.00117      -0.629
##  5    641.  18.7    656.  -15.5 0.00301   18.6 0.00105      -0.836
##  6    606.  21.4    650.  -44.6 0.00446   18.5 0.0130       -2.40 
##  7    607.  19.5    654.  -47.7 0.00239   18.5 0.00794      -2.57 
##  8    609   20.9    651.  -42.3 0.00343   18.5 0.00895      -2.28 
##  9    612.  19.9    653.  -41.0 0.00244   18.5 0.00597      -2.21 
## 10    613.  20.8    652.  -38.9 0.00329   18.5 0.00723      -2.09 
## # … with 410 more rows

More broom Tools: augment

Y ̂ 
i

û i



Class Size Regression Result I
Using OLS, we �nd:

= 689.9 − 2.28 × strtest scoreˆ



Class Size Regression Result II
There's a great package called equatiomatic  that prints this equation in markdown  or

.

Here was my code:

# install.packages("equatiomatic") # install for first use
library(equatiomatic) # load it
extract_eq(school_reg, # regression lm object
           use_coefs = TRUE, # use names of variables
           coef_digits = 2, # round to 2 digits
           fix_signs = TRUE) # fix negatives (instead of + -)

LT XA
E

= 698.93 − 2.28(str)testscr̂

= 698.93 − 2.28(str)testscr̂



One district in our sample is Richmond, CA:

CASchool %>%
  filter(district=="Richmond Elementary") %>%
  dplyr::select(district, testscr, str)

## # A tibble: 1 × 3
##   district            testscr   str
##   <chr>                 <dbl> <dbl>
## 1 Richmond Elementary    672.    22

Predicted value:

Residual

Class Size Regression: A Data Point

= 698 − 2.28(22) ≈ 648Test Scoreˆ

Richmond

= 672 − 648 ≈ 24û Richmond


