2.4 - OLS: Goodness of Fit and Bias

 ECON 480 • Econometrics • Fall 2020 Ryan SafnerAssistant Professor of Economics
, safner@hood.edu
© ryansafner/metricsF20
© metricsF20.classes.ryansafner.com

Outline

Goodness of Fit
Bias: The Sampling Distributions of the OLS Estimators
Bias and Exogeneity.

Goodness of Fit

Models

"All models are wrong. But some are useful." - George Box

Models

"All models are wrong. But some are useful." - George Box

All of Statistics:

$$
\text { Observed }_{i}=\widehat{\text { Model }}_{i}+\text { Error }_{i}
$$

Goodness of Fit

- How well does a line fit data? How tightly clustered around the line are the data points?
- Quantify how much variation in Y_{i} is "explained" by the model

$$
\underbrace{Y_{i}}_{\text {Observed }}=\underbrace{\widehat{Y_{i}}}_{\text {Model }}+\underbrace{\hat{u}}_{\text {Error }}
$$

Goodness of Fit: R^{2}

- Primary measure ${ }^{\dagger}$ is regression R -squared, the fraction of variation in Y explained by variation in predicted values (\hat{Y})

$$
R^{2}=\frac{\operatorname{var}\left(\widehat{Y_{i}}\right)}{\operatorname{var}\left(Y_{i}\right)}
$$

† Sometimes called the "coefficient of determination"

Goodness of Fit: R^{2} Formula

$$
R^{2}=\frac{E S S}{T S S}
$$

- Explained Sum of Squares (ESS): ${ }^{\dagger}$ sum of squared deviations of predicted values from their mean

$$
E S S=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

- Total Sum of Squares (TSS): sum of squared deviations of observed values from their mean

$$
T S S=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

[^0]${ }^{2}$ It can be shown that $\overline{\hat{Y}}_{i}=\bar{Y}$

Goodness of Fit: R^{2} Formula II

- Equivalently, the complement of the fraction of unexplained variation in Y_{i}

$$
R^{2}=1-\frac{S S E}{T S S}
$$

- Equivalently, the square of the correlation coefficient between X and Y :

$$
R^{2}=\left(r_{X, Y}\right)^{2}
$$

Visualizing R^{2}

- Total Variation in Y: Areas A + C

$$
T S S=\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

$$
R^{2}=\frac{E S S}{T S S}=\frac{C}{A+C}
$$

- Variation in Y explained by X : Area C

$$
E S S=\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}
$$

- Unexplained variation in Y : Area A

$$
S S E=\sum_{i=1}^{n}\left(\hat{u_{i}}\right)^{2}
$$

Visualizing R^{2}

```
# make a function to calc. sum of sq. devs
sum_sq <- function(x){sum((x - mean(x))^2)}
# find total sum of squares
TSS <- school_reg %>%
    augment() %>%
    summarize(TSS = sum_sq(testscr))
# find explained sum of squares
ESS <- school_reg %>%
    augment() %>%
    summarize(TSS = sum_sq(.fitted))
# look at them and divide to get R^2
tribble(
    ~ESS, ~TSS, ~R_sq,
    ESS, TSS, ESS/TSS
    ) %>%
    knitr::kable()
```

ESS TSS R_sq
7794.11152109 .60 .0512401

$$
R^{2}=\frac{E S S}{T S S}=\frac{C}{A+C}=0.05
$$

Calculating R^{2} in $\mathbf{R} \mathbf{I}$

- Recall broom's augment () command makes a lot of new regression-based values like:
- .fitted: predicted values $\left(\hat{Y}_{i}\right)$
- .resid: residuals ($\hat{u_{i}}$)

```
library(broom)
school_reg %>%
    augment() %>%
    head(., n=5) # show first 5 values
## # A tibble: 5 x 8
```



```
\#\# 2 661. 21.5 650. 11.3 0.00475 18.6 0.000893 0.612
\#\# 3 644. 18.7 656. -12.7 \(0.00297 \quad 18.60 .000700 \quad-0.685\)
\#\# 4 648. 17.4 659. -11.7 0.00586 \(18.60 .00117 \quad-0.629\)
## 5 641. 18.7 656. -15.5 0.00301 18.6 0.00105 -0.836
```


Calculating R^{2} in \mathbf{R} II

- Or, simpler, can calculate R^{2} in R as the ratio of variances in model vs. actual

```
# as ratio of variances
school_reg %>%
    augment() %>%
    summarize(r_sq = var(.fitted)/var(testscr)) # var. of *predicted* testscr over var. of *actual* testscr
```

\#\# \# A tibble: 1×1
\#\# r_sq
\#\# <dbl>
\#\# 10.0512

$$
R^{2}=\frac{\operatorname{var}(\hat{Y})}{\operatorname{var}(Y)}=\frac{\frac{1}{n-1} \sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}\right)^{2}}{\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}} \rightarrow \frac{E S S}{T S S}
$$

- ESS and TSS are simply the numerators of the variance of \hat{Y} and Y, respectively (i.e. before dividing by $n-1$, which will cancel out).

Goodness of Fit: Standard Error of the Regression

- Standard Error of the Regression, $\hat{\sigma}$ or $\hat{\sigma}_{u}$ is an estimator of the standard deviation of u_{i}

$$
\hat{\sigma}_{u}=\sqrt{\frac{S S E}{n-2}}
$$

- Measures the average size of the residuals (distances between data points and the regression line)
- An average prediction error of the line
- Degrees of Freedom correction of $n-2$: we use up 2 df to first calculate $\hat{\beta}_{0}$ and $\hat{\beta_{1}}$!

Calculating SER in \mathbf{R}

\#\# \# A tibble: 1×3
\#\# SSE df SER
\#\# <dbl> <dbl> <dbl>
\#\# 1 144315. 41818.6


```
school_reg %>%
```

school_reg %>%
augment() %>%
augment() %>%
summarize(SSE = sum(.resid^2),
summarize(SSE = sum(.resid^2),
df = n()-2,
df = n()-2,
SER = sqrt(SSE/df))

```
        SER = sqrt(SSE/df))
```

\#\# \# A tibble: 1×3			
\#\#	SSE	$d f$	SER
\#\#	<dbl>	<dbl>	<dbl>
\#\#	1	144315.	418

In large samples (where $n-2 \approx n$), SER \rightarrow standard deviation of the residuals

```
school_reg %>%
    augment() %>%
    summarize(sd_resid = sd(.resid))
```

```
## # A tibble: 1 x 1
## sd_resid
## <dbl>
## 1 18.6
```


Goodness of Fit: Looking at R I

- summary() command in Base R gives:
- Multiple R-squared
- Residual standard error (SER)
- Calculated with a df of $n-2$
\# Base R
summary(school_reg)

```
##
## Call:
## lm(formula = testscr ~ str, data = CASchool)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & \(1 Q\) & Median & \(3 Q\) & Max \\
\(\# \#\) & -47.727 & -14.251 & 0.483 & 12.822 & 48.540
\end{tabular}
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 698.9330 9.4675 73.825 < 2e-16 ***
## str -2.2798 0.4798 -4.751 2.78e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18.58 on 418 degrees of freedom
## Multiple R-squared: 0.05124, Adjusted R-squared: 0.04897
## F-statistic: 22.58 on 1 and 418 DF, p-value: 2.783e-06
```


Goodness of Fit: Looking at R II

```
# using broom
library(broom)
glance(school_reg)
## # A tibble: 1 x 12
## r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.0512 0.0490 18.6 22.6 0.00000278 1 -1822. 3650.3663.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
```

- r.squared is $0.05 \Longrightarrow$ about 5% of variation in testscr is explained by our model
- sigma (SER) is $18.6 \Longrightarrow$ average test score is about 18.6 points above/below our model's prediction

```
# extract it if you want with pull
school_r_sq <- glance(school_reg) %>% pull(r.squared)
school_r_sq
```


Bias: The Sampling Distributions of the OLS Estimators

Recall: The Two Big Problems with Data

- We use econometrics to identify causal relationships and make inferences about them

1. Problem for identification: endogeneity

- X is exogenous if its variation is unrelated to other factors (u) that affect Y

- X is endogenous if its variation is related to other factors (u) that affect Y

2. Problem for inference: randomness

- Data is random due to natural sampling variation
- Taking one sample of a population will yield slightly different information than another sample of the same population

Distributions of the OLS Estimators

- OLS estimators ($\hat{\beta_{0}}$ and $\hat{\beta_{1}}$) are computed from a finite (specific) sample of data
- Our OLS model contains $\mathbf{2}$ sources of randomness:
- Modeled randomness: u includes all factors affecting Y other than X
- different samples will have different values of those other factors $\left(u_{i}\right)$
- Sampling randomness: different samples will generate different OLS estimators
- Thus, $\hat{\beta}_{0}, \hat{\beta}_{1}$ are also random variables, with their own sampling distribution

Inferential Statistics and Sampling Distributions

- Inferential statistics analyzes a sample to make inferences about a much larger (unobservable) population
- Population: all possible individuals that match some well-defined criterion of interest
- Characteristics about (relationships between variables describing) populations are called "parameters"

- Sample: some portion of the population of interest to represent the whole
- Samples examine part of a population to generate statistics used to estimate population parameters

Sampling Basics

Example: Suppose you randomly select 100 people and ask how many hours they spend on the internet each day. You take the mean of your sample, and it comes out to 5.4 hours.

- 5.4 hours is a sample statistic describing the sample; we are more interested in the corresponding parameter of the relevant population (e.g. all Americans)
- If we take another sample of 100 people, would we get the same number?
- Roughly, but probably not exactly
- Sampling variability describes the effect of a statistic varying somewhat from sample to sample
- This is normal, not the result of any error or bias!

I.I.D. Samples

- If we collect many samples, and each sample is randomly drawn from the population (and then replaced), then the distribution of samples is said to be independently and identically distributed (i.i.d.)
- Each sample is independent of each other sample (due to replacement)
- Each sample comes from the identical
 underlying population distribution

The Sampling Distribution of OLS Estimators

- Calculating OLS estimators for a sample makes the OLS estimators themselves random variables:
- Draw of i is random \Longrightarrow value of each $\left(X_{i}, Y_{i}\right)$ is random $\Longrightarrow \hat{\beta_{0}}, \hat{\beta_{1}}$ are random
- Taking different samples will create different values of $\hat{\beta_{0}}, \hat{\beta_{1}}$

- Therefore, $\hat{\beta_{0}}, \hat{\beta_{1}}$ each have a sampling distribution across different samples

The Central Limit Theorem

- Central Limit Theorem (CLT): if we collect samples of size n from the same population and generate a sample statistic (e.g. OLS estimator), then with large enough n, the distribution of the sample statistic is approximately normal IF

1. $n \geq 30$
2. Samples come from a known normal distribution $\sim N(\mu, \sigma)$

- If neither of these are true, we have other methods (coming shortly!)
- One of the most fundamental principles in all of statistics
- Allows for virtually all testing of statistical hypotheses \rightarrow estimating probabilities of values on a normal distribution

The Sampling Distribution of $\hat{\beta}_{1}$ I

- The CLT allows us to approximate the sampling distributions of $\hat{\beta_{0}}$ and $\hat{\beta_{1}}$ as normal
- We care about $\hat{\beta}_{1}$ (slope) since it has economic meaning, rarely about $\hat{\beta_{0}}$ (intercept)

$$
\hat{\beta}_{1} \sim N\left(E\left[\hat{\beta}_{1}\right], \sigma_{\hat{\beta_{1}}}\right)
$$

The Sampling Distribution of $\hat{\beta}_{1}$ II

$$
\hat{\beta_{1}} \sim N\left(E\left[\hat{\beta_{1}}\right], \sigma_{\hat{\beta_{1}}}\right)
$$

- We want to know:

1. $E\left[\hat{\beta_{1}}\right]$; what is the center of the distribution? (today)
2. $\sigma_{\hat{\beta}_{1}}$; how precise is our estimate? (next class)

Bias and Exogeneity

Assumptions about Errors I

- In order to talk about $E\left[\hat{\beta_{1}}\right.$], we need to talk about u
- Recall: u is a random variable, and we can never measure the error term

Assumptions about Errors II

- We make 4 critical assumptions about u :

Assumptions about Errors II

- We make 4 critical assumptions about u :

1. The expected value of the residuals is 0

$$
E[u]=0
$$

Assumptions about Errors II

- We make 4 critical assumptions about u :

1. The expected value of the residuals is 0

$$
E[u]=0
$$

2. The variance of the residuals over X is constant:

$$
\operatorname{var}(u \mid X)=\sigma_{u}^{2}
$$

Assumptions about Errors II

- We make 4 critical assumptions about u :

1. The expected value of the residuals is 0

$$
E[u]=0
$$

2. The variance of the residuals over X is constant:

$$
\operatorname{var}(u \mid X)=\sigma_{u}^{2}
$$

3. Errors are not correlated across observations:

$$
\operatorname{cor}\left(u_{i}, u_{j}\right)=0 \quad \forall i \neq j
$$

Assumptions about Errors II

- We make 4 critical assumptions about u :

1. The expected value of the residuals is 0

$$
E[u]=0
$$

2. The variance of the residuals over X is constant:

$$
\operatorname{var}(u \mid X)=\sigma_{u}^{2}
$$

3. Errors are not correlated across observations:

$$
\operatorname{cor}\left(u_{i}, u_{j}\right)=0 \quad \forall i \neq j
$$

4. There is no correlation between X and the error term:

$$
\operatorname{cor}(X, u)=0 \text { or } E[u \mid X]=0
$$

Assumptions 1 and 2: Errors are i.i.d.

1. The expected value of the residuals is 0

$$
E[u]=0
$$

2. The variance of the residuals over X is constant:

$$
\operatorname{var}(u \mid X)=\sigma_{u}^{2}
$$

- The first two assumptions \Longrightarrow errors are i.i.d., drawn from the same distribution with mean 0 and variance σ_{u}^{2}

Assumption 2: Homoskedasticity

- The variance of the residuals over X is constant:

$$
\operatorname{var}(u \mid X)=\sigma_{u}^{2}
$$

- Assumption 2 implies that errors are "homoskedastic": they have the same variance across X
- Often this assumption is violated: errors may be "heteroskedastic": they do not have the same variance across X
- This is a problem for inference, but we have a simple fix for this (next class)

Assumption 3: No Serial Correlation

- Errors are not correlated across observations:

$$
\operatorname{cor}\left(u_{i}, u_{j}\right)=0 \quad \forall i \neq j
$$

- For simple cross-sectional data, this is rarely an issue
- Time-series \& panel data nearly always contain serial correlation or autocorrelation between errors
- e.g. "this week's sales look a lot like last weel's sales, which look like...etc"
- There are fixes to deal with autocorrelation
 (coming much later)

Assumption 4: The Zero Conditional Mean Assumption

- No correlation between X and the error term:

$$
\operatorname{cor}(X, u)=0
$$

- This is the absolute killer assumption, because it assumes exogeneity
- Often called the Zero Conditional Mean assumption:

$$
E[u \mid X]=0
$$

"Does knowing X give me any useful information about u ?"

- If yes: model is endogenous, biased and not-causal!

Exogeneity and Unbiasedness

- $\hat{\beta}_{1}$ is unbiased iff there is no systematic difference, on average, between sample values of $\hat{\beta_{1}}$ and true population parameter β_{1}, i.e.

$$
E\left[\hat{\beta_{1}}\right]=\beta_{1}
$$

- Does not mean any sample gives us $\hat{\beta_{1}}=\beta_{1}$, only the estimation procedure will, on average, yield the correct value
- Random errors above and below the true value cancel out (so that on average, $E[\hat{u} \mid X]=0)$

Sidenote: Statistical Estimators I

- In statistics, an estimator is a rule for calculating a statistic (about a population parameter)

Example: We want to estimate the average height (H) of U.S. adults (population) and have a random sample of 100 adults.

- Calculate the mean height of our sample (\bar{H}) to estimate the true mean height of the population $\left(\mu_{H}\right)$
- \bar{H} is an estimator of μ_{H}
- There are many estimators we could use to estimate μ_{H}
- How about using the first value in our sample: H_{1} ?

Sidenote: Statistical Estimators II

- What makes one estimator (e.g. $\bar{H})$ better than another (e.g. H_{1}) ? ${ }^{\dagger}$

1. Biasedness: does the estimator give us the true parameter on average?
2. Efficiency: an estimator with a smaller variance is better

Low bias, low variability

High bias, low variability High bias, high variability
${ }^{\dagger}$ Technically, we also care about consistency: minimizing uncertainty about the correct value. The Law of Large Numbers, similar to CLT, permits this. We don't need to get too advanced about probability in this class.

Exogeneity and Unbiasedness I

- $\hat{\beta}_{1}$ is the Best Linear Unbiased Estimator (BLUE) estimator of β_{1} when X is exogenous ${ }^{\dagger}$
- No systematic difference, on average, between sample values of $\hat{\beta_{1}}$ and the true population β_{1} :

$$
E\left[\hat{\beta_{1}}\right]=\beta_{1}
$$

- Does not mean that each sample gives us
$\hat{\beta_{1}}=\beta_{1}$, only the estimation procedure will, on average, yield the correct value

Low bias, low variability

High bias, low variability High bias, high variability
${ }^{\dagger}$ The proof for this is known as the famous Gauss-Markov Theorem. See today's class notes for a simplified proof.

Exogeneity and Unbiasedness II

- Recall, an exogenous variable (X) is unrelated to other factors affecting Y, i.e.:

$$
\operatorname{cor}(X, u)=0
$$

- Again, this is called the Zero Conditional Mean Assumption

$$
E(u \mid X)=0
$$

- For any known value of X, the expected value of u is 0
- Knowing the value of X must tell us nothing about the value of u (anything else relevant to Y other than X)
- We can then confidently assert causation: $X \rightarrow Y$

Endogeneity and Bias

- Nearly all independent variables are endogenous, they are related to the error term u

$$
\operatorname{cor}(X, u) \neq 0
$$

Example: Suppose we estimate the following relationship:

$$
\text { Violent }_{c^{2} i m e s}^{t}=\beta_{0}+\beta_{1} \text { Ice cream sales }{ }_{t}+u_{t}
$$

- We find $\hat{\beta}_{1}>0$
- Does this mean Ice cream sales \rightarrow Violent crimes?

Endogeneity and Bias: Takeaways

- The true expected value of $\hat{\beta}_{1}$ is actually: ${ }^{\dagger}$

$$
E\left[\hat{\beta_{1}}\right]=\beta_{1}+\operatorname{cor}(X, u) \frac{\sigma_{u}}{\sigma_{X}}
$$

1) If X is exogenous: $\operatorname{cor}(X, u)=0$, we're just left with β_{1}
2) The larger $\operatorname{cor}(X, u)$ is, larger bias: $\left(E\left[\hat{\beta}_{1}\right]-\beta_{1}\right)$
3) We can "sign" the direction of the bias based on $\operatorname{cor}(X, u)$

- Positive $\operatorname{cor}(X, u)$ overestimates the true $\beta_{1}\left(\hat{\beta_{1}}\right.$ is too high)
- Negative $\operatorname{cor}(X, u)$ underestimates the true β_{1} ($\hat{\beta_{1}}$ is too low)

[^1]
Endogeneity and Bias: Example I

Example:

$$
\text { wages }_{i}=\beta_{0}+\beta_{1} \text { education }_{i}+u
$$

- Is this an accurate reflection of education \rightarrow wages?
- Does $E[u \mid$ education $]=0$?
- What would $E[u \mid$ education $]>0$ mean?

Endogeneity and Bias: Example II

Example:

per capita cigarette consumption $=\beta_{0}+\beta_{1}$ State cig tax rate $+u$

- Is this an accurate reflection of taxes \rightarrow consumption?
- Does $E[u \mid t a x]=0$?
- What would $E[u \mid$ tax $]>0$ mean?

[^0]: ${ }^{1}$ Sometimes called Model Sum of Squares (MSS) or Regression Sum of Squares (RSS) in other textbooks

[^1]: ${ }^{\dagger}$ See today's class notes for proof.

