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Goodness of Fit



"All models are wrong. But some
are useful." - George Box

Models



"All models are wrong. But some
are useful." - George Box
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Goodness of Fit
How well does a line �t data? How tightly clustered around the line are the data points?

Quantify how much variation in  is "explained" by the model

Recall OLS estimators chosen to minimize Sum of Squared Errors (SSE): 
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Goodness of Fit: 

Primary measure† is regression R-squared, the fraction of variation in  explained by
variation in predicted values 
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† Sometimes called the "coef�cient of determination"



Goodness of Fit:  Formula

Explained Sum of Squares (ESS):† sum of squared deviations of predicted values from their mean‡

Total Sum of Squares (TSS): sum of squared deviations of observed values from their mean
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1 Sometimes called Model Sum of Squares (MSS) or Regression Sum of Squares (RSS) in other textbooks
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Goodness of Fit:  Formula II
Equivalently, the complement of the fraction of unexplained variation in 

Equivalently, the square of the correlation coef�cient between  and :
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Total Variation in Y: Areas A + C

Variation in Y explained by X: Area C

Unexplained variation in Y: Area A

Visualizing R2
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# make a function to calc. sum of sq. devs
sum_sq <- function(x){sum((x - mean(x))^2)}

# find total sum of squares
TSS <- school_reg %>%
  augment() %>%
  summarize(TSS = sum_sq(testscr))

# find explained sum of squares
ESS <- school_reg %>%
  augment() %>%
  summarize(TSS = sum_sq(.fitted))

# look at them and divide to get R^2
tribble(
  ~ESS, ~TSS, ~R_sq,
  ESS, TSS, ESS/TSS
  ) %>%
  knitr::kable()

ESS TSS R_sq

7794.11 152109.6 0.0512401

Visualizing R2
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Calculating  in R I
Recall broom 's augment()  command makes a lot of new regression-based values like:

.fitted : predicted values 

.resid : residuals 

library(broom)
school_reg %>%
  augment() %>%
  head(., n=5) # show first 5 values

## # A tibble: 5 × 8
##   testscr   str .fitted .resid    .hat .sigma  .cooksd .std.resid
##     <dbl> <dbl>   <dbl>  <dbl>   <dbl>  <dbl>    <dbl>      <dbl>
## 1    691.  17.9    658.   32.7 0.00442   18.5 0.00689       1.76 
## 2    661.  21.5    650.   11.3 0.00475   18.6 0.000893      0.612
## 3    644.  18.7    656.  -12.7 0.00297   18.6 0.000700     -0.685
## 4    648.  17.4    659.  -11.7 0.00586   18.6 0.00117      -0.629
## 5    641.  18.7    656.  -15.5 0.00301   18.6 0.00105      -0.836
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Calculating  in R II
Or, simpler, can calculate  in R  as the ratio of variances in model vs. actual

# as ratio of variances
school_reg %>%
  augment() %>%
  summarize(r_sq = var(.fitted)/var(testscr)) # var. of *predicted* testscr over var. of *actual* testscr

## # A tibble: 1 × 1
##     r_sq
##    <dbl>
## 1 0.0512

ESS and TSS are simply the numerators of the variance of  and , respectively (i.e. before
dividing by , which will cancel out).
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Goodness of Fit: Standard Error of the Regression
Standard Error of the Regression,  or  is an estimator of the standard deviation of 

Measures the average size of the residuals (distances between data points and the
regression line)

An average prediction error of the line

Degrees of Freedom correction of : we use up 2 df to �rst calculate  and !

σ ̂  σ ̂ u ui

=σû
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school_reg %>%
  augment() %>%
  summarize(SSE = sum(.resid^2),
            df = n()-2,
            SER = sqrt(SSE/df))

## # A tibble: 1 × 3
##       SSE    df   SER
##     <dbl> <dbl> <dbl>
## 1 144315.   418  18.6

school_reg %>%
  augment() %>%
  summarize(sd_resid = sd(.resid))

## # A tibble: 1 × 1
##   sd_resid
##      <dbl>
## 1     18.6

Calculating SER in R

In large samples (where , SER  standard deviation of the residualsn − 2 ≈ n) →



summary()  command in Base R  gives:
Multiple R-squared
Residual standard error
(SER)
Calculated with a df of 

# Base R
summary(school_reg)

## 
## Call:
## lm(formula = testscr ~ str, data = CASchool)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -47.727 -14.251   0.483  12.822  48.540 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 698.9330     9.4675  73.825  < 2e-16 ***
## str          -2.2798     0.4798  -4.751 2.78e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.58 on 418 degrees of freedom
## Multiple R-squared:  0.05124,    Adjusted R-squared:  0.04897 
## F-statistic: 22.58 on 1 and 418 DF,  p-value: 2.783e-06

Goodness of Fit: Looking at R I

n − 2



Goodness of Fit: Looking at R II
# using broom
library(broom)
glance(school_reg)

## # A tibble: 1 × 12
##   r.squared adj.r.squared sigma statistic    p.value    df logLik   AIC   BIC
##       <dbl>         <dbl> <dbl>     <dbl>      <dbl> <dbl>  <dbl> <dbl> <dbl>
## 1    0.0512        0.0490  18.6      22.6 0.00000278     1 -1822. 3650. 3663.
## # … with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

r.squared  is 0.05   about 5% of variation in testscr  is explained by our model
sigma  (SER) is 18.6   average test score is about 18.6 points above/below our model's prediction

# extract it if you want with pull
school_r_sq <- glance(school_reg) %>% pull(r.squared)
school_r_sq

## [1] 0.0512401

⟹

⟹



Bias: The Sampling Distributions of the OLS
Estimators



We use econometrics to identify causal
relationships and make inferences about them

�. Problem for identi�cation: endogeneity

 is exogenous if its variation is unrelated
to other factors  that affect 

 is endogenous if its variation is related to
other factors  that affect 

�. Problem for inference: randomness

Data is random due to natural sampling
variation
Taking one sample of a population will yield
slightly different information than another
sample of the same population

Recall: The Two Big Problems with Data
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Distributions of the OLS Estimators

OLS estimators  and  are computed from a �nite (speci�c) sample of data

Our OLS model contains 2 sources of randomness:

Modeled randomness:  includes all factors affecting  other than 

different samples will have different values of those other factors 

Sampling randomness: different samples will generate different OLS estimators

Thus,  are also random variables, with their own sampling distribution
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Inferential statistics analyzes a sample to make
inferences about a much larger (unobservable)
population

Population: all possible individuals that match
some well-de�ned criterion of interest

Characteristics about (relationships between
variables describing) populations are called
“parameters”

Sample: some portion of the population of
interest to represent the whole

Samples examine part of a population to
generate statistics used to estimate
population parameters

Inferential Statistics and Sampling Distributions



Sampling Basics
Example: Suppose you randomly select 100 people and ask how many hours they spend on the
internet each day. You take the mean of your sample, and it comes out to 5.4 hours.

5.4 hours is a sample statistic describing the sample; we are more interested in the
corresponding parameter of the relevant population (e.g. all Americans)

If we take another sample of 100 people, would we get the same number?

Roughly, but probably not exactly

Sampling variability describes the effect of a statistic varying somewhat from sample to sample

This is normal, not the result of any error or bias!



If we collect many samples, and each
sample is randomly drawn from the
population (and then replaced), then the
distribution of samples is said to be
independently and identically
distributed (i.i.d.)

Each sample is independent of each
other sample (due to replacement)

Each sample comes from the identical
underlying population distribution

I.I.D. Samples



Calculating OLS estimators for a sample
makes the OLS estimators themselves
random variables:

Draw of  is random  value of each 

 is random   are
random

Taking different samples will create

different values of 

Therefore,  each have a sampling
distribution across different samples

The Sampling Distribution of OLS Estimators
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The Central Limit Theorem
Central Limit Theorem (CLT): if we collect samples of size  from the same population and
generate a sample statistic (e.g. OLS estimator), then with large enough , the distribution
of the sample statistic is approximately normal IF
�. 
�. Samples come from a known normal distribution 

If neither of these are true, we have other methods (coming shortly!)

One of the most fundamental principles in all of statistics

Allows for virtually all testing of statistical hypotheses  estimating probabilities of values
on a normal distribution

n
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→



The CLT allows us to approximate the

sampling distributions of  and  as
normal

We care about  (slope) since it has

economic meaning, rarely about 
(intercept)
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We want to know:

�. ; what is the center of the
distribution? (today)

�. ; how precise is our estimate? (next

class)
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Bias and Exogeneity



In order to talk about , we need to
talk about 

Recall:  is a random variable, and we
can never measure the error term

Assumptions about Errors I
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We make 4 critical assumptions about :

Assumptions about Errors II

u



We make 4 critical assumptions about :

�. The expected value of the residuals is 0

Assumptions about Errors II

u

E[u] = 0



We make 4 critical assumptions about :

�. The expected value of the residuals is 0

�. The variance of the residuals over  is constant:

Assumptions about Errors II
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E[u] = 0

X

var(u|X) = σ2
u



We make 4 critical assumptions about :

�. The expected value of the residuals is 0

�. The variance of the residuals over  is constant:

�. Errors are not correlated across observations:

Assumptions about Errors II
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We make 4 critical assumptions about :

�. The expected value of the residuals is 0

�. The variance of the residuals over  is constant:

�. Errors are not correlated across observations:

�. There is no correlation between  and the error
term:

Assumptions about Errors II

u

E[u] = 0

X

var(u|X) = σ2
u

cor( , ) = 0 ∀i ≠ jui uj

X

cor(X, u) = 0 or E[u|X] = 0



�. The expected value of the residuals is 0

�. The variance of the residuals over  is
constant:

The �rst two assumptions  errors are
i.i.d., drawn from the same distribution
with mean 0 and variance 

Assumptions 1 and 2: Errors are i.i.d.

E[u] = 0

X

var(u|X) = σ2
u
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The variance of the residuals over  is constant:

Assumption 2 implies that errors are
“homoskedastic”: they have the same variance
across 

Often this assumption is violated: errors may be
“heteroskedastic”: they do not have the same
variance across 

This is a problem for inference, but we have a
simple �x for this (next class)

Assumption 2: Homoskedasticity
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u

X

X



Errors are not correlated across observations:

For simple cross-sectional data, this is rarely an
issue

Time-series & panel data nearly always contain
serial correlation or autocorrelation between
errors

e.g. "this week's sales look a lot like last weel's
sales, which look like...etc"

There are �xes to deal with autocorrelation
(coming much later)

Assumption 3: No Serial Correlation

cor( , ) = 0 ∀i ≠ jui uj



No correlation between  and the error term:

This is the absolute killer assumption, because
it assumes exogeneity

Often called the Zero Conditional Mean
assumption:

"Does knowing  give me any useful
information about ?"

If yes: model is endogenous, biased
and not-causal!

Assumption 4: The Zero Conditional Mean Assumption

X

cor(X, u) = 0

E[u|X] = 0

X

u



Exogeneity and Unbiasedness

 is unbiased iff there is no systematic difference, on average, between sample values of 

 and true population parameter , i.e.

Does not mean any sample gives us , only the estimation procedure will, on
average, yield the correct value

Random errors above and below the true value cancel out (so that on average, 
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Sidenote: Statistical Estimators I
In statistics, an estimator is a rule for calculating a statistic (about a population parameter)

Example: We want to estimate the average height (H) of U.S. adults (population) and have a
random sample of 100 adults.

Calculate the mean height of our sample  to estimate the true mean height of the
population 

 is an estimator of 

There are many estimators we could use to estimate 

How about using the �rst value in our sample:  ?
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What makes one estimator (e.g. )
better than another (e.g. )?†

�. Biasedness: does the estimator give us
the true parameter on average?

�. Ef�ciency: an estimator with a smaller
variance is better

Sidenote: Statistical Estimators II

H̄

H1

† Technically, we also care about consistency: minimizing uncertainty about the correct value. The Law of Large
Numbers, similar to CLT, permits this. We don't need to get too advanced about probability in this class.



 is the Best Linear Unbiased Estimator (BLUE)
estimator of  when  is exogenous†

No systematic difference, on average, between

sample values of  and the true population :

Does not mean that each sample gives us 

, only the estimation procedure will, on
average, yield the correct value

Exogeneity and Unbiasedness I
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† The proof for this is known as the famous Gauss-Markov Theorem. See today's class notes for a simpli�ed proof.

https://en.wikipedia.org/wiki/Gauss%E2%80%93Markov_theorem
https://metricsf21.classes.ryansafner.com/class/2.4-class


Exogeneity and Unbiasedness II
Recall, an exogenous variable  is unrelated to other factors affecting , i.e.:

Again, this is called the Zero Conditional Mean Assumption

For any known value of , the expected value of  is 0

Knowing the value of  must tell us nothing about the value of  (anything else relevant to 
 other than )

We can then con�dently assert causation: 
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Endogeneity and Bias
Nearly all independent variables are endogenous, they are related to the error term 

Example: Suppose we estimate the following relationship:

We �nd 

Does this mean Ice cream sales  Violent crimes?
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Endogeneity and Bias: Takeaways

The true expected value of  is actually:†

1) If  is exogenous: , we're just left with 

2) The larger  is, larger bias: 

3) We can “sign” the direction of the bias based on 

Positive  overestimates the true   is too high)

Negative  underestimates the true   is too low)
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† See today's class notes for proof.

https://metricsf21.classes.ryansafner.com/class/2.4-class


Endogeneity and Bias: Example I
Example:

Is this an accurate re�ection of ?

Does ?

What would  mean?

wage = + educatio + usi β0 β1 ni

education → wages

E[u|education] = 0

E[u|education] > 0



Endogeneity and Bias: Example II
Example:

Is this an accurate re�ection of ?

Does ?

What would  mean?

per capita cigarette consumption = + State cig tax rate + uβ0 β1

taxes → consumption

E[u|tax] = 0

E[u|tax] > 0


