
2.6 — Statistical Inference
ECON 480 • Econometrics • Fall 2021
Ryan Safner
Assistant Professor of Economics
 safner@hood.edu
 ryansafner/metricsF21
metricsF21.classes.ryansafner.com

mailto:safner@hood.edu
https://github.com/ryansafner/metricsF21
https://metricsf21.classes.ryansafner.com/

Outline
Why Uncertainty Matters

Con�dence Intervals

Con�dence Intervals Using the infer Package

Why Uncertainty Matters

We use econometrics to identify causal
relationships and make inferences about them

�. Problem for identi�cation: endogeneity

 is exogenous if
 is endogenous if

�. Problem for inference: randomness

Data is random due to natural sampling
variation
Taking one sample of a population will yield
slightly different information than another
sample of the same population

Recall: The Two Big Problems with Data

X cor(x, u) = 0

X cor(x, u) ≠ 0

Distributions of the OLS Estimators

OLS estimators and are computed from a �nite (speci�c) sample of data

Our OLS model contains 2 sources of randomness:

Modeled randomness: includes all factors affecting other than

different samples will have different values of those other factors

Sampling randomness: different samples will generate different OLS estimators

Thus, are also random variables, with their own sampling distribution

(β0
^

)β1
^

u Y X

()ui

,β0
^ β1

^

The Two Problems: Where We're Heading...Ultimately

Sample Population Unobserved Parameters

We want to identify causal relationships between population variables

Logically �rst thing to consider
Endogeneity problem

We'll use sample statistics to infer something about population parameters

In practice, we'll only ever have a �nite sample distribution of data
We don't know the population distribution of data
Randomness problem

− →−−−−−−−−−−

statistical inference

− →−−−−−−−−−−−

causal indentification

Population Population relationship

Why Sample vs. Population Matters

= 3.24 + 0.44 +Yi Xi ui

= + +Yi β0 β1Xi ui

Sample 1: 30 random individuals Population relationship

Sample relationship

Why Sample vs. Population Matters

= 3.24 + 0.44 +Yi Xi ui

= 3.19 + 0.47Y ̂
i Xi

Sample 2: 30 random individuals Population relationship

Sample relationship

Why Sample vs. Population Matters

= 3.24 + 0.44 +Yi Xi ui

= 4.26 + 0.25Y ̂
i Xi

Sample 3: 30 random individuals Population relationship

Sample relationship

Why Sample vs. Population Matters

= 3.24 + 0.44 +Yi Xi ui

= 2.91 + 0.46Y ̂
i Xi

Let's repeat this process 10,000 times!

This exercise is called a (Monte Carlo)
simulation

I'll show you how to do this next class
with the infer package

Why Sample vs. Population Matters

On average estimated regression lines from our
hypothetical samples provide an unbiased
estimate of the true population regression line

However, any individual line (any one sample)
can miss the mark

This leads to uncertainty about our estimated
regression line

Remember, we only have one sample in
reality!
This is why we care about the standard error

of our line: !

Why Sample vs. Population Matters

E[] =β1

^
β1

se()β1

^

Con�dence Intervals

Statistical Inference

Sample Population Unobserved Parameters− →−−−−−−−−−−

statistical inference

− →−−−−−−−−−−−

causal indentification

Statistical Inference

Sample Population Unobserved Parameters

We want to start inferring what the true population regression model is, using our
estimated regression model from our sample

We can’t yet make causal inferences about whether/how causes
coming after the midterm!

− →−−−−−−−−−−

statistical inference

− →−−−−−−−−−−−

causal indentification

= + X = + X +Yi
^ β0

^
β1
^

− →−−−−−−−−

🤞 hopefully 🤞

Yi β0 β1 ui

X Y

Our problem with uncertainty is we don’t
know whether our sample estimate is close
or far from the unknown population
parameter

But we can use our errors to learn how well
our model statistics likely estimate the true
parameters

Use and its standard error, for
statistical inference about true

We have two options...

Estimation and Statistical Inference

β1

^
se()β1

^

β1

Point estimate

Use our and to determine if we have
statistically signi�cant evidence to reject a hypothesized

Con�dence interval

Use and to create an range of values that gives
us a good chance of capturing the true

Estimation and Statistical Inference

β1

^
se()β1

^

β1

β1

^
se()β1

^

β1

Accuracy vs. Precision

More typical in econometrics to do hypothesis testing (next class)

We can generate our con�dence interval
by generating a “bootstrap” sampling
distribution

This takes our sample data, and
resamples it by selecting random
observations with replacement

This allows us to approximate the

sampling distribution of by
simulation!

Generating Con�dence Intervals

β1
^

Con�dence Intervals Using the infer Package

The infer package allows you to do statistical inference in
a tidy way, following the philosophy of the tidyverse

install first!
install.packages("infer")

load
library(infer)

Con�dence Intervals Using the infer Package

infer allows you to run through these steps manually to
understand the process:

�. specify() a model

�. generate() a bootstrap distribution

�. calculate() the con�dence interval

�. visualize() with a histogram (optional)

Con�dence Intervals with the infer Package I

Con�dence Intervals with the infer Package II

Con�dence Intervals with the infer Package II

Con�dence Intervals with the infer Package II

Con�dence Intervals with the infer Package II

Con�dence Intervals with the infer Package II

Our Sample

term
<chr>

estimate
<dbl>

std.error
<dbl>

statistic
<dbl>

(Intercept) 698.932952 9.4674914 73.824514
str -2.279808 0.4798256 -4.751327

2 rows | 1-4 of 5 columns

Another “Sample”

term
<chr>

estimate
<dbl>

std.error
<dbl>

statistic
<dbl>

(Intercept) 708.270835 9.5041448 74.522311
str -2.797334 0.4802065 -5.825274

2 rows | 1-4 of 5 columns

👆 Bootstrapped from Our Sample

Bootstrapping

Now we want to do this 1,000 times to simulate the unknown sampling distribution of β1
^

The infer Pipeline: Specify

Specify

data %>% specify(y ~ x)

Take our data and pipe it into the specify() function,
which is essentially a lm() function for regression (for our
purposes)

CASchool %>%
 specify(testscr ~ str)

testscr
<dbl>

str
<dbl>

690.80 17.88991
661.20 21.52466
643.60 18.69723
647.70 17.35714
640.85 18.67133

5 rows

The infer Pipeline: Specify

The infer Pipeline: Generate

Specify

Generate

%>% generate(reps = n,
type = "bootstrap")

Now the magic starts, as we run a number of
simulated samples

Set the number of reps and set type to
"bootstrap"

 generate(reps = 1000,
 type = "bootstrap")

The infer Pipeline: Generate

CASchool %>%
 specify(testscr ~ str) %>%

Specify

Generate

%>% generate(reps = n,
type = "bootstrap")

Next1 2 3 4 5 6 ... 1000Previous

replicate
<int>

testscr
<dbl>

str
<dbl>

1 642.20 19.22221
1 664.15 19.93548
1 671.60 20.34927
1 640.90 19.59016
1 677.25 19.34853
1 672.20 20.20000
1 621.40 22.61905
1 657.00 20.86808
1 664.95 25.80000
1 635.20 17.75499

1-10 of 10,000 rows

replicate : the “sample” number (1-1000)

creates x and y values (data points)

The infer Pipeline: Generate

Specify

Generate

Calculate

%>% calculate(stat =
"slope")

 calculate(stat = "slope")

For each of the 1,000 replicates, calculate slope in lm(testscr ~
str)

Calls it the stat

The infer Pipeline: Calculate

CASchool %>%
 specify(testscr ~ str) %>%
 generate(reps = 1000,
 type = "bootstrap") %>%

Specify

Generate

Calculate

%>% calculate(stat =
"slope")

Next1 2 3 4 5 6 ... 100Previous

replicate
<int>

stat
<dbl>

1 -3.0370939
2 -2.2228021
3 -2.6601745
4 -3.5696240
5 -2.0007488
6 -2.0979764
7 -1.9015875
8 -2.5362338
9 -2.3061820

10 -1.9369460

1-10 of 1,000 rows

The infer Pipeline: Calculate

Specify

Generate

Calculate

%>% calculate(stat =
"slope")

boot <- CASchool %>% #<< # save this
 specify(testscr ~ str) %>%
 generate(reps = 1000,
 type = "bootstrap") %>%
 calculate(stat = "slope")

boot is (our simulated) sampling distribution of

!

We can now use this to estimate the con�dence

interval from our

And visualize it

The infer Pipeline: Calculate

β1
^

= −2.28β1
^

A 95% con�dence interval is the middle
95% of the sampling distribution

lower
<dbl>

upper
<dbl>

-3.340545 -1.238815

1 row

Con�dence Interval

sampling_dist<-ggplot(data = boot)+
 aes(x = stat)+
 geom_histogram(color="white", fill = "#e64173
 labs(x = expression(hat(beta[1])))+
 theme_pander(base_family = "Fira Sans Condens
 base_size=20)
sampling_dist

A con�dence interval is the middle 95%
of the sampling distribution

ci<-boot %>%
 summarize(lower = quantile(stat, 0.025),
 upper = quantile(stat, 0.975))
ci

lower
<dbl>

upper
<dbl>

-3.340545 -1.238815

1 row

Con�dence Interval

 geom_vline(data = ci, aes(xintercept = lower)
 geom_vline(data = ci, aes(xintercept = upper)

sampling_dist+

Specify

Generate

Calculate

Get Con�dence Interval

%>%
get_confidence_interval()

 get_confidence_interval(level = 0.95,
 type = "se",
 point_estimate = -2.28)

lower_ci
<dbl>

upper_ci
<dbl>

-3.273376 -1.286624

1 row

The infer Pipeline: Con�dence Interval

CASchool %>% #<< # save this
 specify(testscr ~ str) %>%
 generate(reps = 1000,
 type = "bootstrap") %>%
 calculate(stat = "slope") %>%

Broom Can Estimate a Con�dence Interval
tidy_reg <- school_reg %>% tidy(conf.int = T)
tidy_reg

term
<chr>

estimate
<dbl>

std.error
<dbl>

statistic
<dbl>

p.value
<dbl>

conf.low
<dbl>

conf.high
<dbl>

(Intercept) 698.932952 9.4674914 73.824514 6.569925e-242 680.32313 717.542779
str -2.279808 0.4798256 -4.751327 2.783307e-06 -3.22298 -1.336637

2 rows

save and extract confidence interval
our_CI <- tidy_reg %>%
 filter(term == "str") %>%
 select(conf.low, conf.high)

our_CI

conf.low
<dbl>

conf.high
<dbl>

-3.22298 -1.336637

1 row

Specify

Generate

Calculate

Visualize

%>% visualize()

 visualize()

visualize() is just a wrapper for ggplot()

The infer Pipeline: Con�dence Interval

CASchool %>% #<< # save this
 specify(testscr ~ str) %>%
 generate(reps = 1000,
 type = "bootstrap") %>%
 calculate(stat = "slope") %>%

Specify

Generate

Calculate

Visualize

%>% visualize()

 visualize()+shade_ci(endpoints = our_CI)

If we have our con�dence levels saved (our_CI) we can
shade_ci() in infer 's visualize() function

The infer Pipeline: Con�dence Interval

CASchool %>% #<< # save this
 specify(testscr ~ str) %>%
 generate(reps = 1000,
 type = "bootstrap") %>%
 calculate(stat = "slope") %>%

In general, a con�dence interval (CI) takes a
point estimate and extrapolates it within
some margin of error (MOE):

 estimate - MOE , estimate + MOE

The main question is, how con�dent do we
want to be that our interval contains the
true parameter?

Larger con�dence level, larger margin
of error (and thus larger interval)

Con�dence Intervals

([] [])

 is the con�dence level of our
con�dence interval

 is the “signi�cance level” that we
use in hypothesis testing

 probability that the true
parameter is not contained within our
interval

Typical levels: 90%, 95%, 99%

95% is especially common,

Con�dence Intervals

(1 − α)

α

α =

α = 0.05

Depending on our con�dence level, we
are essentially looking for the middle

% of the sampling distribution

This puts in the tails; in each tail

Con�dence Levels

(1 − α)

α α

2

Recall the 68-95-99.7% empirical rule for
(standard) normal distributions!

95% of data falls within 2 standard
deviations of the mean

Thus, in 95% of samples, the true
parameter is likely to fall within about 2
standard deviations of the sample
estimate

 I’m playing fast and loose here, we can’t actually use the normal distribution, we use the
Student’s t-distribution with n-k-1 degrees of freedom. But there’s no need to complicate
things you don’t need to know about. Look at today’s class notes for more.

Con�dence Levels and the Empirical Rule

†

†

https://metricsf21.classes.ryansafner.com/class/2.6-class

Interpreting Con�dence Intervals
So our con�dence interval for our slope is (-3.22, -1.33), what does this mean again?

❌ 95% of the time, the true effect of class size on test score will be between -3.22 and -1.33

❌ We are 95% con�dent that a randomly selected school district will have an effect of class
size on test score between -3.22 and -1.33

❌ The effect of class size on test score is -2.28 95% of the time.

✅ We are 95% con�dent that in similarly constructed samples, the true effect is between -3.22
and -1.33

Base R doesn't show con�dence intervals in the
lm summary() output, need the confint
command

confint(school_reg)

2.5 % 97.5 %
(Intercept) 680.32313 717.542779
str -3.22298 -1.336637

broom can include con�dence intervals

 tidy(conf.int = TRUE)

term
<chr>

estimate
<dbl>

std.error
<dbl>

(Intercept) 698.932952 9.4674914
str -2.279808 0.4798256

2 rows | 1-3 of 7 columns

Estimating in R (Via Regression, rather than infer)

school_reg %>%

