2.6 - Statistical Inference ECON 480 • Econometrics • Fall 2021 Ryan Safner Assistant Professor of Economics ✓ safner@hood.edu ○ ryansafner/metricsF21 ⓒ metricsF21.classes.ryansafner.com

Outline

Why Uncertainty Matters

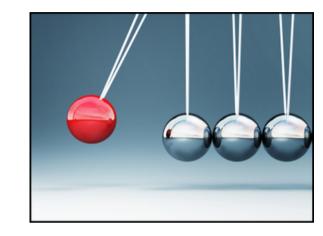
Confidence Intervals

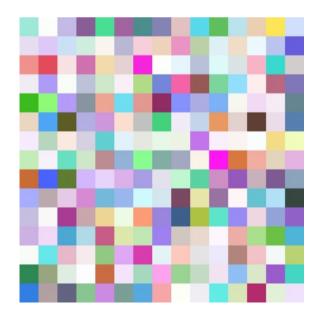
<u>Confidence Intervals Using the infer Package</u>

Why Uncertainty Matters

Recall: The Two Big Problems with Data

- We use econometrics to **identify** causal relationships and make **inferences** about them
- 1. Problem for identification: endogeneity
 - *X* is **exogenous** if cor(x, u) = 0
 - *X* is **endogenous** if $cor(x, u) \neq 0$
- 2. Problem for inference: randomness
 - Data is random due to natural sampling variation
 - Taking one sample of a population will yield slightly different information than another sample of the same population



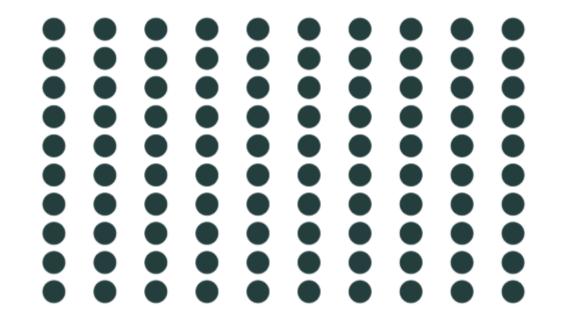


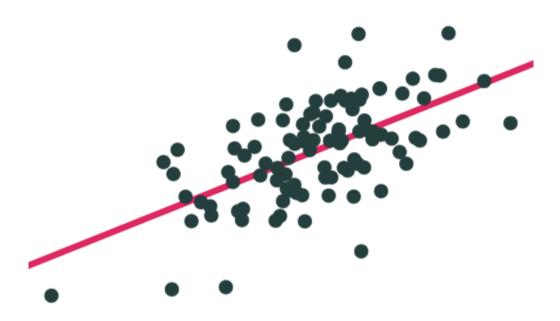
Distributions of the OLS Estimators

- OLS estimators $(\hat{\beta}_0 \text{ and } \hat{\beta}_1)$ are computed from a finite (specific) sample of data
- Our OLS model contains **2 sources of randomness**:
- *Modeled* randomness: u includes all factors affecting Y other than X
 - different samples will have different values of those other factors (u_i)
- *Sampling* randomness: different samples will generate different OLS estimators
 - Thus, $\hat{\beta}_0, \hat{\beta}_1$ are *also* random variables, with their own sampling distribution

The Two Problems: Where We're Heading...Ultimately

- We want to **identify** causal relationships between **population** variables
 - Logically first thing to consider
 - Endogeneity problem
- We'll use **sample** *statistics* to **infer** something about population *parameters*
 - In practice, we'll only ever have a finite *sample distribution* of data
 - We *don't* know the *population distribution* of data
 - Randomness problem





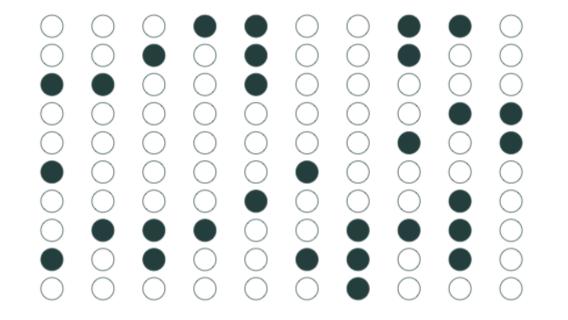
Population

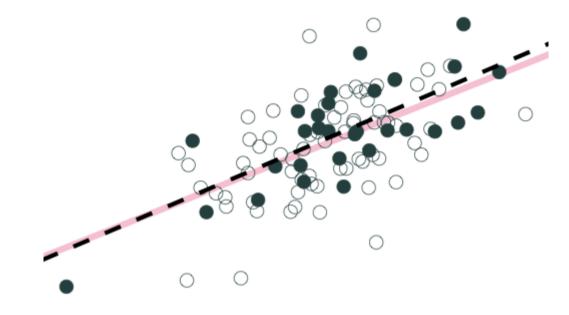
Population relationship

 $Y_i = 3.24 + 0.44X_i + u_i$

 $Y_i = \beta_0 + \beta_1 X_i + u_i$



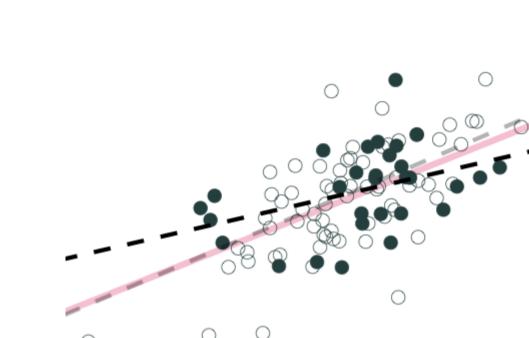




Sample 1: 30 random individuals

Population relationship $Y_i = 3.24 + 0.44X_i + u_i$

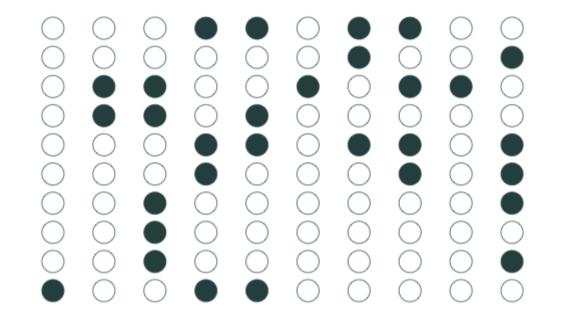
Sample relationship $\hat{Y}_i = 3.19 + 0.47X_i$

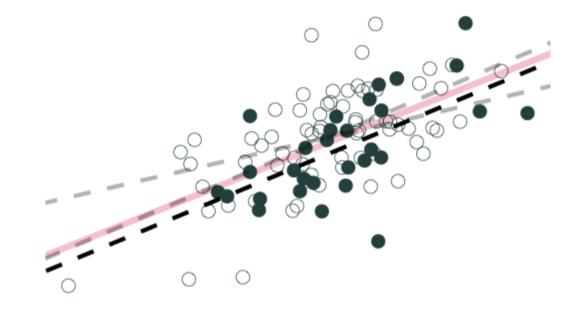


Sample 2: 30 random individuals

Population relationship $Y_i = 3.24 + 0.44X_i + u_i$

Sample relationship $\hat{Y}_i = 4.26 + 0.25X_i$



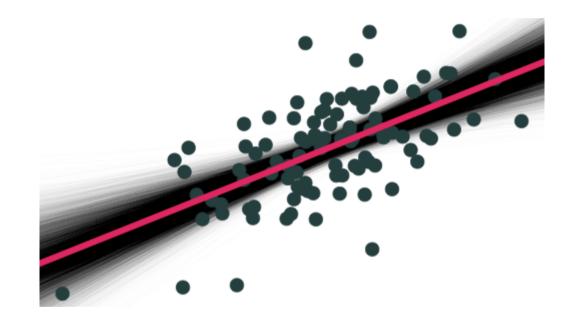


Sample 3: 30 random individuals

Population relationship $Y_i = 3.24 + 0.44X_i + u_i$

Sample relationship $\hat{Y}_i = 2.91 + 0.46X_i$

- Let's repeat this process **10,000 times**!
- This exercise is called a (Monte Carlo) simulation
 - I'll show you how to do this next class
 with the infer package



• On average estimated regression lines from our hypothetical samples provide an unbiased estimate of the true population regression line

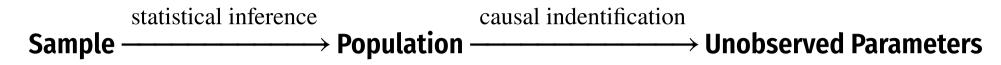
 $E[\hat{\beta_1}] = \beta_1$

- However, any *individual line* (any *one* sample) can miss the mark
- This leads to **uncertainty** about our estimated regression line
 - Remember, we only have *one* sample in reality!
 - This is why we care about the standard error of our line: $se(\hat{\beta}_1)!$



Confidence Intervals

Statistical Inference



Statistical Inference

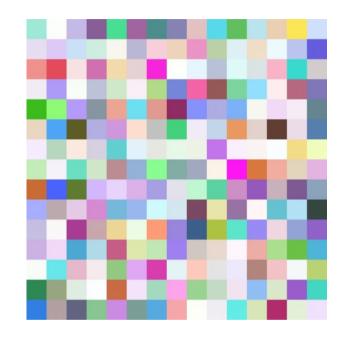
• We want to start **inferring** what the true population regression model is, using our estimated regression model from our sample

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X \xrightarrow{\triangleleft \text{ hopefully } \triangleleft} Y_i = \beta_0 + \beta_1 X + u_i$$

- We can't yet make causal inferences about whether/how X causes Y
 - coming after the midterm!

Estimation and Statistical Inference

- Our problem with **uncertainty** is we don't know whether our sample estimate is *close* or *far* from the unknown population parameter
- But we can use our errors to learn how well our model statistics likely estimate the true parameters
- Use $\hat{\beta_1}$ and its standard error, $se(\hat{\beta_1})$ for statistical inference about true β_1
- We have two options...



Estimation and Statistical Inference



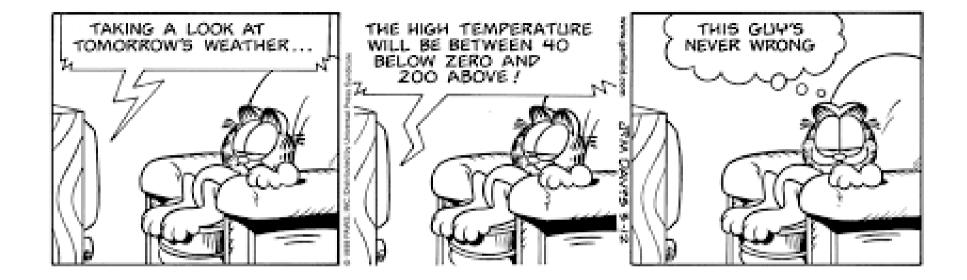
Point estimate

• Use our $\hat{\beta_1}$ and $se(\hat{\beta_1})$ to determine if we have statistically significant evidence to reject a hypothesized β_1

Confidence interval

• Use $\hat{\beta_1}$ and $se(\hat{\beta_1})$ to create an *range* of values that gives us a good chance of capturing the true β_1

Accuracy vs. Precision



• More typical in econometrics to do hypothesis testing (next class)

Generating Confidence Intervals

- We can generate our confidence interval by generating a **"bootstrap"** sampling distribution
- This takes our sample data, and resamples it by selecting random observations with replacement
- This allows us to approximate the sampling distribution of $\hat{\beta}_1$ by simulation!

Confidence Intervals Using the infer Package

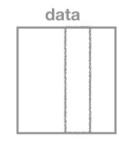
Confidence Intervals Using the infer Package

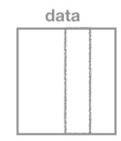
• The infer package allows you to do statistical inference in a tidy way, following the philosophy of the tidyverse

install first!
install.packages("infer")

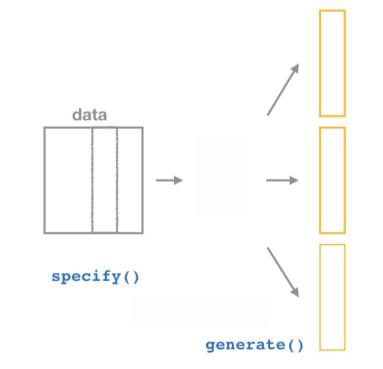
load
library(infer)

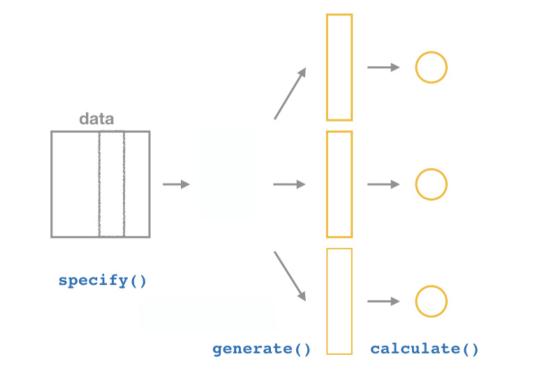
- **infer** allows you to run through these steps manually to understand the process:
- 1. specify() a model
 - 2. generate() a bootstrap distribution
 - 3. calculate() the confidence interval
 - 4. visualize() with a histogram (optional)

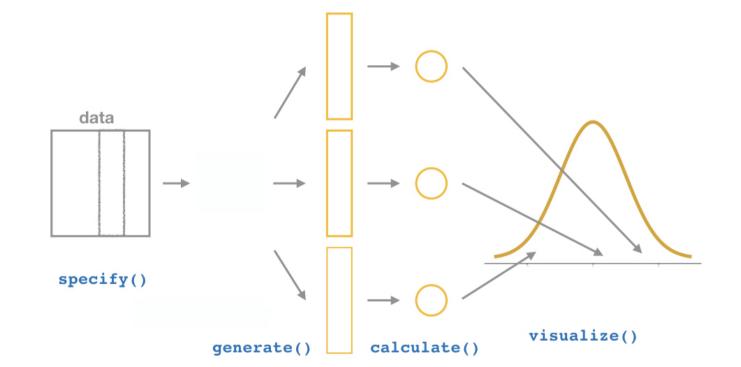




specify()







Bootstrapping

Our Sample

term	estimate	std.error	statistic
<chr></chr>	<dpl></dpl>	<qpf></qpf>	<qpf></qpf>
(Intercept)	698.932952	9.4674914	73.824514
str	-2.279808	0.4798256	-4.751327

Another "Sample"

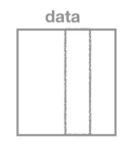
term	estimate	std.error	statistic
<chr></chr>	<qpf></qpf>	<dpf></dpf>	<dpl></dpl>
(Intercept)	708.270835	9.5041448	74.522311
str	-2.797334	0.4802065	-5.825274

bootstrapped from Our Sample

- Now we want to do this 1,000 times to simulate the unknown sampling distribution of \hat{eta}_1

The *infer* Pipeline: Specify





specify()

The *infer* Pipeline: Specify

Specify

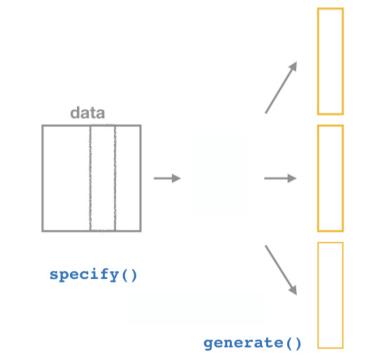
data %>% specify(y ~ x)

 Take our data and pipe it into the specify() function, which is essentially a lm() function for regression (for our purposes)

CASchool %>% specify(testscr ~ str)

testscr	str
<dpl></dpl>	<dbl></dbl>
690.80	17.88991
661.20	21.52466
643.60	18.69723
647.70	17.35714
640.85	18.67133
5 rows	

The *infer* Pipeline: Generate



The *infer* Pipeline: Generate

Specify

Generate

%>% generate(reps = n,
type = "bootstrap")

- Now the magic starts, as we run a number of simulated samples
- Set the number of reps and set type to "bootstrap"

```
CASchool %>%
specify(testscr ~ str) %>%
generate(reps = 1000,
type = "bootstrap")
```


The *infer* Pipeline: Generate

replicate	testscr	str
<int></int>	<dpl></dpl>	<qpf></qpf>
1	642.20	19.22221
1	664.15	19.93548
1	671.60	20.34927
1	640.90	19.59016
1	677.25	19.34853
1	672.20	20.20000
1	621.40	22.61905
1	657.00	20.86808
1	664.95	25.80000
1	635.20	17.75499
1-10 of 10,000 rows	Previous 1 2	3 4 5 6 1000Next

Specify

Generate

%>% generate(reps = n,
type = "bootstrap")

- replicate: the "sample" number (1-1000)
- creates x and y values (data points)

The *infer* Pipeline: Calculate

Specify

Generate

Calculate

```
%>% calculate(stat =
"slope")
```

```
CASchool %>%
  specify(testscr ~ str) %>%
  generate(reps = 1000,
        type = "bootstrap") %>%
  calculate(stat = "slope")
```

- For each of the 1,000 replicates, calculate slope in lm(testscr ~ str)
- Calls it the stat

The *infer* Pipeline: Calculate



	replic	ate		stat
	<	int>		<qpf></qpf>
		1		-3.0370939
		2		-2.2228021
		3		-2.6601745
		4		-3.5696240
		5		-2.0007488
		6		-2.0979764
		7		-1.9015875
e(stat =		8		-2.5362338
		9		-2.3061820
		10		-1.9369460
	1-10 of 1,000 rows	Previous 1	2 3 4 5	6 100 Next

Specify

Generate

Calculate

```
%>% calculate(stat =
"slope")
```

The *infer* Pipeline: Calculate

Specify

Generate

Calculate

```
%>% calculate(stat =
"slope")
```

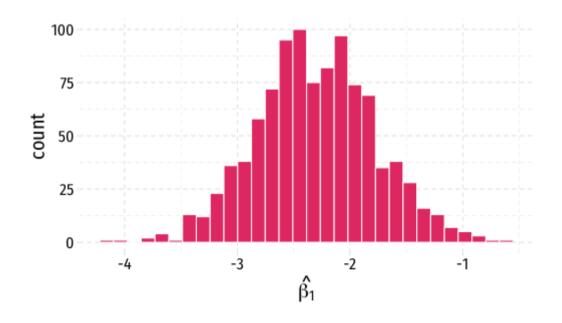
```
boot <- CASchool %>% #<< # save this
specify(testscr ~ str) %>%
generate(reps = 1000,
        type = "bootstrap") %>%
calculate(stat = "slope")
```

- boot is (our simulated) sampling distribution of $\hat{\beta_1}!$
- We can now use this to estimate the confidence interval from $our \hat{\beta_1} = -2.28$
- And visualize it

Confidence Interval

• A 95% confidence interval is the middle 95% of the sampling distribution

lower	upper
<dpl></dpl>	<qpf></qpf>
-3.340545	-1.238815
1 row	



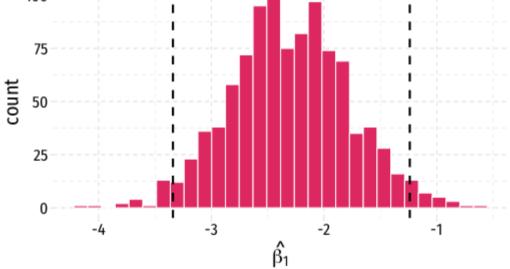
Confidence Interval

• A confidence interval is the middle 95% of the sampling distribution

	٠
<u> </u>	л.
L.	1
-	_

lower	upper
<dpl></dpl>	<qpf></qpf>
-3.340545	-1.238815
1 row	

sampling_dist+ geom_vline(data = ci, aes(xintercept = lower) geom_vline(data = ci, aes(xintercept = upper) 100 75



The *infer* Pipeline: Confidence Interval

Specify

Generate

Calculate

Get Confidence Interval

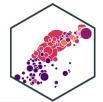
%>%

get_confidence_interval()

```
CASchool %>% #<< # save this
specify(testscr ~ str) %>%
generate(reps = 1000,
        type = "bootstrap") %>%
calculate(stat = "slope") %>%
get_confidence_interval(level = 0.95,
        type = "se",
        point_estimate = -2.28)
```

lower_ci	upper_ci
<qp[></qp[>	<qpf></qpf>
-3.273376	-1.286624
1 row	

Broom Can Estimate a Confidence Interval



tidy_reg <- school_reg %>% tidy(conf.int = T)
tidy_reg

term	estimate	std.error	statistic	p.value	conf.low	conf.high
<chr></chr>	<qpf><</qpf>	<qpf></qpf>	<qpf></qpf>	<qpf></qpf>	<dbl></dbl>	<qpf></qpf>
(Intercept)	698.932952	9.4674914	73.824514	6.569925e-242	680.32313	717.542779
str	-2.279808	0.4798256	-4.751327	2.783307e-06	-3.22298	-1.336637
2 rows						

```
# save and extract confidence interval
our_CI <- tidy_reg %>%
filter(term == "str") %>%
select(conf.low, conf.high)
```

our_CI

conf.low	conf.high
<pre>cldp></pre>	<dbl></dbl>
-3.22298	-1.336637
1 row	

The *infer* Pipeline: Confidence Interval

Specify

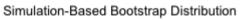
Generate

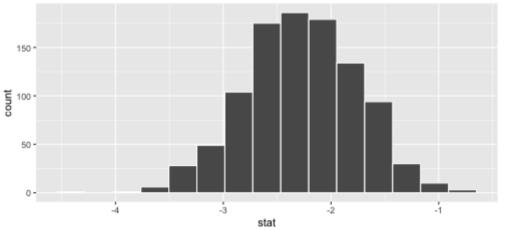
Calculate

Visualize

%>% visualize()

```
CASchool %>% #<< # save this
  specify(testscr ~ str) %>%
  generate(reps = 1000,
        type = "bootstrap") %>%
  calculate(stat = "slope") %>%
  visualize()
```





• visualize() is just a wrapper for ggplot()

The *infer* Pipeline: Confidence Interval

Specify

Generate

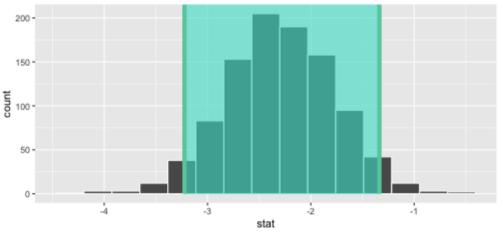
Calculate

Visualize

%>% visualize()

```
CASchool %>% #<< # save this
specify(testscr ~ str) %>%
generate(reps = 1000,
        type = "bootstrap") %>%
calculate(stat = "slope") %>%
visualize()+shade_ci(endpoints = our_CI)
```

Simulation-Based Bootstrap Distribution



• If we have our confidence levels saved (our_CI) we can shade_ci() in infer's visualize() function

Confidence Intervals

 In general, a confidence interval (CI) takes a point estimate and extrapolates it within some margin of error (MOE):

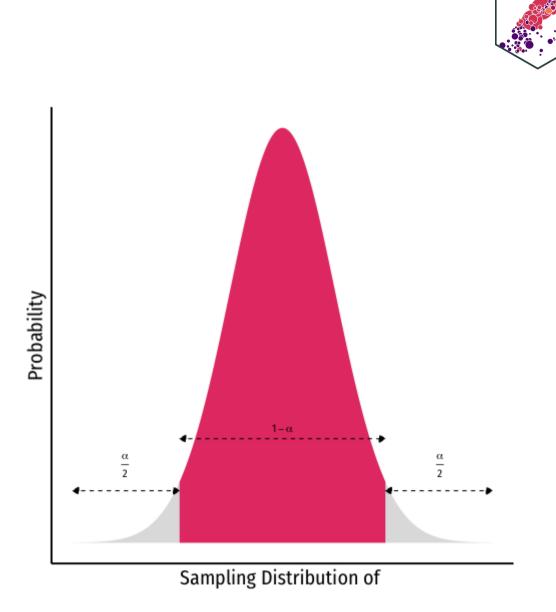
- The main question is, how confident do we want to be that our interval contains the true parameter?
 - Larger confidence level, larger margin of error (and thus larger interval)

Confidence Intervals

- (1α) is the **confidence level** of our confidence interval
 - $\circ \alpha$ is the **"significance level"** that we use in hypothesis testing
 - α = probability that the true parameter is *not* contained within our interval
- Typical levels: 90%, 95%, 99%
 - $\circ~$ 95% is especially common, lpha=0.05

Confidence Levels

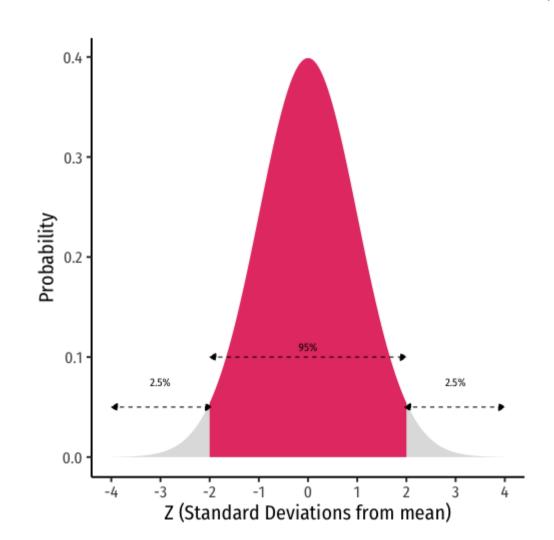
- Depending on our confidence level, we are essentially looking for the middle (1α) % of the sampling distribution
- This puts α in the tails; $\frac{\alpha}{2}$ in each tail



Confidence Levels and the Empirical Rule

- Recall the 68-95-99.7% empirical rule for (standard) normal distributions![†]
- 95% of data falls within 2 standard deviations of the mean
- Thus, in 95% of samples, the true parameter is likely to fall within *about* 2 standard deviations of the sample estimate

[†] I'm playing fast and loose here, we can't actually use the normal distribution, we use the Student's t-distribution with n-k-1 degrees of freedom. But there's no need to complicate things you don't need to know about. Look at today's <u>class notes</u> for more.



Interpreting Confidence Intervals

• So our confidence interval for our slope is (-3.22, -1.33), what does this mean again?

★ 95% of the time, the true effect of class size on test score will be between -3.22 and -1.33

X We are 95% confident that a randomly selected school district will have an effect of class size on test score between -3.22 and -1.33

X The effect of class size on test score is -2.28 95% of the time.

We are 95% confident that in similarly constructed samples, the true effect is between -3.22 and -1.33

Estimating in R (Via Regression, rather than infer)

 Base R doesn't show confidence intervals in the lm summary() output, need the confint command

confint(school_reg)

##		2.5 %	97.5 %
##	(Intercept)	680.32313	717.542779
##	str	-3.22298	-1.336637

• **broom** can include confidence intervals

school_reg %>%
 tidy(conf.int = TRUE)

term	estimate	std.error
<chr></chr>	<qpf></qpf>	<qpf></qpf>
(Intercept)	698.932952	9.4674914
str	-2.279808	0.4798256