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Hypothesis Testing



We want to test if our estimates are statistically
signi�cant and they describe the population

this is the “bread and butter” of using
inferential statistics

Examples:

Does reducing class size actually improve
test scores?
Do more years of education increase
your wages?
Is the gender wage gap between men and
women 23%?

All modern science is built upon
statistical hypothesis testing, so
understand it well!

Estimation and Hypothesis Testing I



Estimation and Hypothesis Testing II
Note, we can test a lot of hypotheses about a lot of population parameters, e.g.

A population mean 
Example: average height of adults

A population proportion 
Example: percent of voters who voted for Trump

A difference in population means 
Example: difference in average wages of men vs. women

A difference in population proportions 
Example: difference in percent of patients reporting symptoms of drug A vs B

We will focus on hypotheses about population regression slope , i.e. the causal effect  of  on 
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 With a model this simple, it's almost certainly not causal, but this is the ultimate direction we are heading...†



Null and Alternative Hypotheses I
All scienti�c inquiries begin with a null hypothesis  that proposes a speci�c value of a
population parameter

Notation: add a subscript 0:  (or , , etc)

We suggest an alternative hypothesis , often the one we hope to verify
Note, can be multiple alternative hypotheses: 

Ask: "Does our data (sample) give us suf�cient evidence to reject  in favor of ?"
Note: the test is always about !
See if we have suf�cient evidence to reject the status quo
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Null and Alternative Hypotheses II
Null hypothesis assigns a value (or a range) to a population parameter

e.g.  or 
Most common is    has no effect on  (no slope for a line)
Note: always an equality!

Alternative hypothesis must mathematically contradict the null hypothesis

e.g.  or  or 
Note: always an inequality!

Alternative hypotheses come in two forms:
�. One-sided alternative:  or 
�. Two-sided alternative: 

Note this means either  or 
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Components of a Valid Hypothesis Test
All statistical hypothesis tests have the following components:

�. A null hypothesis, 

�. An alternative hypothesis, 

�. A test statistic to determine if we reject  when the statistic reaches a "critical value"

Beyond the critical value is the "rejection region", suf�cient evidence to reject 

�. A conclusion whether or not to reject  in favor of 
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Sample statistic  will rarely be exactly equal
to the hypothesized parameter 

Difference between observed statistic and true
parameter could be because:

Parameter is not the hypothesized value

 is false

Parameter is truly hypothesized value but
sampling variability gave us a different estimate

 is true

We cannot distinguish between these two
possibilities with any certainty

Type I and Type II Errors I
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We can interpret our estimates
probabilistically as commiting one of two
types of error:

�. Type I error (false positive): rejecting 
when it is in fact true

Believing we found an important result
when there is truly no relationship

�. Type II error (false negative): failing to
reject  when it is in fact false

Believing we found nothing when there
was truly a relationship to �nd

Type I and Type II Errors II

H0

H0



Type I and Type II Errors III

Depending on context, committing one type of error may be more serious than the other



Type I and Type II Errors IV

Anglo-American common law presumes defendant is innocent: 

Jury judges whether the evidence presented against the defendant is plausible assuming the defendant were
in fact innocent

If highly improbable (beyond a “reasonable doubt”): suf�cient evidence to reject  and convict

H0

H0



William Blackstone

(1723-1780)

"It is better that ten guilty persons escape than that
one innocent suffer."

Type I error is worse than a Type II error in law!

Type I and Type II Errors V

Blackstone, William, 1765-1770, Commentaries on the Laws of England



Type I and Type II Errors VI



Type I and Type II Errors VI



Signi�cance Level, , and Con�dence Level 
The signi�cance level, , is the probability of a Type I error

The con�dence level is de�ned as 

Specify in advance an -level (0.10, 0.05, 0.01) with associated con�dence level (90%,
95%, 99%)

The probability of a Type II error is de�ned as :

α 1 − α

α

α = P(Reject  |  is true)H0 H0

(1 − α)

α

β

β = P(Don't reject  |  is false)H0 H0
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Power and p-values
The statistical power of the test is : the probability of correctly rejecting  when 

 is in fact false (e.g. convicting a guilty person)

The -value or signi�cance probability is the probability that, if the null hypothesis were
true, the test statistic from any sample will be at least as extreme as the test statistic from
our sample

where  represents some test statistic
 is the test statistic we observe in our sample

More on this in a bit

(1 − β) H0
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p-Values and Statistical Signi�cance
After running our test, we need to make a decision between the competing hypotheses

Compare -value with pre-determined  (commonly, , 95% con�dence level)

If : statistically signi�cant evidence suf�cient to reject  in favor of 

Note this does not mean  is true! We merely have rejected !

If : insuf�cient evidence to reject 

Note this does not mean  is true! We merely have failed to reject !

p α α = 0.05

p < α H0 Ha

Ha H0

p ≥ α H0

H0 H0



Digression: p-Values and the Philosophy of
Science



Sir Ronald A. Fisher

(1890—1962)

"The null hypothesis is never proved or established,
but is possibly disproved, in the course of
experimentation. Every experiment may be said to
exist only in order to give the facts a chance of
disproving the null hypothesis."

1931, The Design of Experiments

Hypothesis Testing and the Philosophy of Science I



Modern philosophy of science is largely based
off of hypothesis testing and falsi�ability, which
form the "Scienti�c Method"

For something to be "scienti�c", it must be
falsi�able, or at least testable

Hypotheses can be corroborated with evidence,
but always tentative until falsi�ed by data in
suggesting an alternative hypothesis

"All swans are white" is a hypothesis
rejected upon discovery of a single black
swan

Hypothesis Testing and the Philosophy of Science I

†

 Note: economics is a very different kind of "science" with a different methodology!†



Hypothesis Testing and p-Values
Hypothesis testing, con�dence intervals, and p-values are probably the hardest thing to
understand in statistics

Fivethirtyeight: Not Even Scientists Can Easily Explain P-values



https://fivethirtyeight.com/features/not-even-scientists-can-easily-explain-p-values/


Hypothesis Testing: Which Test? I
Rigorous course on statistics (ECMG 212 or MATH 112) will spend weeks going through
different types of tests:

Sample mean; difference of means
Proportion; difference of proportions
Z-test vs t-test
1 sample vs. 2 samples

 testχ2

http://ryansafner.com/courses/ecmg212


Hypothesis Testing: Which Test? II



There is Only One Test
Fortunately, some clever statisticians realized “there is only one test” and some built a nice
R  package called infer

�. Calculate a statistic, , from a sample of data

�. Simulate a world where  is null 

�. Examine the distribution of  across the null world

�. Calculate the probability that  could exist in the null world

�. Decide if  is statistically signi�cant

δi
†

δ ( )H0

δ
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  can stand in for any test-statistic in any hypothesis test! For our purposes,  is the slope of our regression
sample, .

† δ δ

β ̂ 
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https://allendowney.blogspot.com/2011/05/there-is-only-one-test.html


Elements of a Hypothesis Test

Alan Downey: “There is still only one test”

https://allendowney.blogspot.com/2016/06/there-is-still-only-one-test.html


Hypothesis Testing with the infer Package I
R naturally runs the following hypothesis test on any regression as part of lm() :

infer  allows you to run through these steps manually to understand the process:

�. specify()  a model

�. hypothesize()  the null

�. generate()  simulations of the null world

�. calculate()  the -value

�. visualize()  with a histogram (optional)

:H0

:H1

= 0β1

≠ 0β1

p



Hypothesis Testing with the infer Package II



Hypothesis Testing with the infer Package II



Hypothesis Testing with the infer Package II



Hypothesis Testing with the infer Package II



Hypothesis Testing with the infer Package II



Hypothesis Testing with the infer Package II



Classical Inference: Critical Values of Test Statistic

Test statistic : measures how far what we observed in our sample  is from what we
would expect if the null hypothesis were true 

Calculated from a sampling distribution of the estimator (i.e. 
In econometrics, we use -distributions which have  degrees of freedom

Rejection region: if the test statistic reaches a "critical value" of , then we reject the null
hypothesis

(δ) ( )β1
^

( = 0)β1

)β1
^

t n − k − 1 †

δ

 Again, see last class's appendix for more on the t-distribution.  is the number of independent variables our

model has, in this case, with just one , . We use two degrees of freedom to calculate  and , hence we
have  df.

† k

X k = 1 β0
^

β1
^

n − 2

https://metricsf21.classes.ryansafner.com/content/2.6-content#appendix


Hypothesis Testing by Simulation, with infer



Imagine a Null World, where  is True

Our world, and a world where  by assumption.

H0

= 0β1



Our Sample

term
<chr>

estimate
<dbl>

std.error
<dbl>

(Intercept) 698.932952 9.4674914
str -2.279808 0.4798256

2 rows | 1-3 of 5 columns

Another Sample

term
<chr>

estimate
<dbl>

std.error
<dbl>

(Intercept) 647.8027952 9.7147718
str 0.3235038 0.4923581

2 rows | 1-3 of 5 columns

Comparing the Worlds I
From that null world where  is true, we simulate another sample and
calculate OLS estimators again

: = 0H0 β1



Next1 2 3 4 5 6 ... 100Previous

Comparing the Worlds II

From that null world where  is true, let's simulate 1,000 samples and calculate slope  for
each

sample
<int>

slope
<dbl>

1 -0.3027333296
2 -0.3624481355
3 0.6448518690
4 -0.0745971847
5 0.5969444290
6 0.5505335318
7 0.5927466147
8 0.0572148658
9 -0.0989989073

10 0.8043957511

1-10 of 1,000 rows

: = 0H0 β1 ( )β1
^



Prepping the infer Pipeline
Before I show you how to do this, let's �rst save our estimated slope from our actual sample

We'll want this later!

# save as obs_slope
sample_slope <- school_reg_tidy %>% # this is the regression tidied with broom's tidy()
  filter(term=="str") %>%
  pull(estimate)

# confirm what it is
sample_slope

## [1] -2.279808



The infer Pipeline: Specify



Specify
data %>%
  specify(y ~ x)

Take our data and pipe it into the specify()  function,
which is essentially a lm()  function for regression (for our
purposes)

CASchool %>%
  specify(testscr ~ str)

testscr
<dbl>

str
<dbl>

690.8 17.88991
661.2 21.52466
643.6 18.69723

3 rows

Note nothing happens yet

The infer Pipeline: Specify



The infer Pipeline: Hypothesize



Specify

Hypothesize
%>% hypothesize(null =
"independence")

Describe what the null hypothesis is here
In infer 's language, we are hypothesizing that str  and
testscr  are independent  

  hypothesize(null = "independence")

testscr
<dbl>

str
<dbl>

690.8 17.88991
661.2 21.52466
643.6 18.69723

3 rows

 See more here about what other hypotheses you can test with infer .

The infer Pipeline: Hypothesize

( = 0)β1
†

CASchool %>%
  specify(testscr ~ str) %>%

†

https://moderndive.netlify.com/9-hypothesis-testing.html


The infer Pipeline: Generate I



Specify

Hypothesize

Generate
%>% generate(reps = n, type =
"permute")

Now the magic starts, as we run a number of
simulated samples
Set the number of reps  and set the type  equal to
"permute"

we want permutation  (not bootstrap !)
because we are simulating a world where 

 by construction!

  generate(reps = 1000,
           type = "permute")

The infer Pipeline: Generate I

= 0β1

CASchool %>%
  specify(testscr ~ str) %>%
  hypothesize(null = "independence") %>%



Specify

Hypothesize

Generate
%>% generate(reps = n, type =
"permute")

Next1 2 3 4 5 6 ... 1000Previous

testscr
<dbl>

str
<dbl>

replicate
<int>

693.95 17.88991 1
642.40 21.52466 1
680.45 18.69723 1
672.70 17.35714 1
666.45 18.67133 1
654.20 21.40625 1
671.95 19.50000 1
671.75 20.89412 1
624.55 19.94737 1
699.10 20.80556 1

1-10 of 10,000 rows

The infer Pipeline: Generate II



The infer Pipeline: Calculate I



Specify

Hypothesize

Generate

Calculate

%>% calculate(stat = "")

We calculate  sample statistics for each of the 1,000
replicate  samples

In our case, calculate the slope,  for each replicate

  calculate(stat = "slope")

Other stat s for calculation: "mean" , "median" ,
"prop" , "diff in means" , "diff in props" , etc.
(see package information)

The infer Pipeline: Calculate I

( )β1
^

CASchool %>%
  specify(testscr ~ str) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1000,
           type = "permute") %>%

https://infer.netlify.com/


Specify

Hypothesize

Generate

Calculate

%>% calculate(stat = "")

Next1 2 3 4 5 6 ... 100Previous

replicate
<int>

stat
<dbl>

1 0.384783281
2 0.241700895
3 0.268799843
4 -0.189039951
5 1.215030315
6 0.511783627
7 -0.457378304
8 1.008206723
9 0.092043084

10 0.233837801

1-10 of 1,000 rows

The infer Pipeline: Calculate II



Specify

Hypothesize

Generate

Calculate

Get p Value
%>% get_p_value(obs stat = "",
direction = "both")

We can calculate the -value

the probability of seeing a value at least as large as our
sample_slope  (-2.28) in our simulated null distribution

Two-sided alternative , we double the raw -value

  get_p_value(obs_stat = sample_slope,
              direction = "both")

p_value
<dbl>

0

1 row

The infer Pipeline: Get p Value

p

: ≠ 0H
a

β1 p

CASchool %>%
  specify(testscr ~ str) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1000,
           type = "permute") %>%
  calculate(stat = "slope") %>%



The infer Pipeline: Visualize I



Specify

Hypothesize

Generate

Calculate

Visualize

%>% visualize()

Make a histogram of our null distribution of 
Note it is centered at  because that's !

  visualize()

The infer Pipeline: Visualize I

β1
= 0β1 H0

CASchool %>%
  specify(testscr ~ str) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1000,
           type = "permute") %>%
  calculate(stat = "slope") %>%



Specify

Hypothesize

Generate

Calculate

Visualize

%>% visualize()

Add our sample_slope  to show our �nding on the null
distr.

  visualize(obs_stat = sample_slope)

The infer Pipeline: Visualize II

CASchool %>%
  specify(testscr ~ str) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1000,
           type = "permute") %>%
  calculate(stat = "slope") %>%



Specify

Hypothesize

Generate

Calculate

Visualize

%>%
visualize()+shade_p_value()

Add shade_p_value()  to see what  is

  shade_p_value(obs_stat = sample_slope,
                direction = "two_sided")

The infer Pipeline: Visualize p-value

p

CASchool %>%
  specify(testscr ~ str) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1000,
           type = "permute") %>%
  calculate(stat = "slope") %>%
  visualize(obs_stat = sample_slope)+



The infer Pipeline: Visualize is a Wrapper of ggplot
infer 's visualize()  function is just a wrapper function for ggplot()

you can take your simulations  tibble  and just ggplot  a normal histogram

simulations %>%
  ggplot(data = .)+
  aes(x = stat)+
  geom_histogram(color="white", fill="#e64173")+
  geom_vline(xintercept = sample_slope,
             color = "blue",
             size = 2,
             linetype = "dashed")+
  annotate(geom = "label",
           x = -2.28,
           y = 100,
           label = expression(paste("Our ", hat(beta[1]))),
           color = "blue")+
  scale_y_continuous(lim=c(0,120),
                     expand = c(0,0))+
  labs(x = expression(paste("Sampling distribution of ", hat(
       y = "Samples")+
    theme_classic(base_family = "Fira Sans Condensed",
           base_size=20)



Classical Statistical Inference (What R
Calculates)



R does things the old-fashioned way,
using a theoretical null distribution
instead of simulating one

A -distribution with  df

Calculate a -statistic for :

What R Does: Classical Statistical Inference I

t n − k − 1 †

t β1
^

test statistic =
estimate − null hypothesis

standard error of estimate

  is the number of  variables.† k X



 same interpretation as : number of std. dev.
away from the sampling distribution's expected

value  (if  were true)

Compares to a critical value of  (pre-
determined by -level &  df)

For 95% con�dence, , 

What R Does: Classical Statistical Inference II

test statistic =
estimate − null hypothesis

standard error of estimate

t Z

E[ ]β1
^ † H0

t∗

α n − k − 1

α = 0.05 ≈ 2t∗ ‡

 The expected value is 0, because our null hypothesis was 

 Again, the 68-95-99.7% empirical rule!

† = 0β1

‡



Our sample slope  is 4.75 standard deviations below the

expected value  (i.e. 0) if  were true

What R Does: Classical Statistical Inference III

t

t

t

=
−β1

^
β1,0

se( )β1
^

=
−2.28 − 0

0.48

= −4.75

β1
^

E[ ]β1
^

H0



p-value: prob. of a test statistic at least as large (in
magnitude) as ours if the null hypothesis were true

Continuous distribution implies we need probability
of area beyond our value
p-value is 2-sided for 

What R Does: Classical Statistical Inference III

t

t

t

=
−β1

^
β1,0

se( )β1
^

=
−2.28 − 0

0.48

= −4.75

: ≠ 0H
a

β1

2 × p( > | − 4.75|) = 0.0000028t418



p-value: p-value: 

1-Sided Tests & p-values

: < 0Ha β1

p(t ≤ )ti

: > 0Ha β1

p(t ≥ )ti



2-Sided Tests and p-values

p-value: 

: ≠ 0Ha β1

2 × p(t ≥ | |)ti



pt()  calculates p robabilities on a t
distribution with arguments:

the t-score
df =  the degrees of freedom
lower.tail =

TRUE  if looking at area to LEFT of value
FALSE  if looking at area to RIGHT of
value

2 * pt(4.75, # I'll double the right tail
       df = 418,
       lower.tail = F) # right tail

## [1] 2.800692e-06

Calculating p-values in R

2 × p( > | − 4.75|) = 0.0000028t418



Hypothesis Tests in Regression Output I
summary(school_reg)

## 
## Call:
## lm(formula = testscr ~ str, data = CASchool)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -47.727 -14.251   0.483  12.822  48.540 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 698.9330     9.4675  73.825  < 2e-16 ***
## str          -2.2798     0.4798  -4.751 2.78e-06 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 18.58 on 418 degrees of freedom
## Multiple R-squared:  0.05124,    Adjusted R-squared:  0.04897 
## F-statistic: 22.58 on 1 and 418 DF,  p-value: 2.783e-06



Hypothesis Tests in Regression Output II
In broom 's tidy()  (with con�dence intervals)

tidy(school_reg, conf.int=TRUE)

term
<chr>

estimate
<dbl>

std.error
<dbl>

statistic
<dbl>

p.value
<dbl>

conf.low
<dbl>

conf.high
<dbl>

(Intercept) 698.932952 9.4674914 73.824514 6.569925e-242 680.32313 717.542779
str -2.279808 0.4798256 -4.751327 2.783307e-06 -3.22298 -1.336637

2 rows

p-value on str  is 0.00000278.



Conclusions

Because the hypothesis test's -value   (0.05)...

We have suf�cient evidence to reject  in favor of our alternative hypothesis. Our sample
suggests that there is a relationship between class size and test scores.

Using the con�dence intervals:

We are 95% con�dent that, from similarly constructed samples, the true marginal effect of
class size on test scores is between -3.22 and -1.34.

:H0

:Ha

= 0β1

≠ 0βa

p < α

H0



Hypothesis Testing vs. Con�dence Intervals
Con�dence intervals are all two-sided by nature

Hypothesis test -test) of  computes a -value of

and  when  (approximately)

If our con�dence interval contains the  value (i.e. , for our test), then we fail to reject .
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 Since our null hypothesis is that , the test statistic simpli�es to this neat fraction.1 = 0β1,0
H0 0 H0



The Use and Abuse of -valuesp



p-H

Source: XKCD

https://xkcd.com/882/


p-Hacking



p-Hacking



p-Hacking

Source: XKCD

https://xkcd.com/882/


Consider what 95% con�dent or 
 means

If we repeat a procedure 20 times, we
should expect  (5%) to produce a �uke
result!

Image source: Seeing Theory

p-Hacking

α = 0.05

1

20

https://seeing-theory.brown.edu/frequentist-inference/index.html


Abusing p-values and “Science”

Source: Washington Post

https://www.washingtonpost.com/news/morning-mix/wp/2015/05/28/how-and-why-a-journalist-tricked-news-outlets-into-thinking-chocolate-makes-you-thin/?hpid=z5


Abusing p-Values and “Science”

Source: SMBC

http://www.smbc-comics.com/?id=1623


“The widespread use of 'statistical
signi�cance' (generally interpreted
as  as a license for
making a claim of a scienti�c
�nding (or implied truth) leads to
considerable distortion of the
scienti�c process.”

Abusing p-Values and “Science”

Wasserstein, Ronald L. and Nicole A. Lazar, (2016), "The ASA's Statement on p-Values: Context, Process, and Purpose," The American Statistician 30(2): 129-133

(p ≤ 0.05)

http://www.tandfonline.com/doi/full/10.1080/00031305.2016.1154108


“No economist has achieved scienti�c success as a
result of a statistically signi�cant coef�cient. Massed
observations, clever common sense, elegant theorems,
new policies, sagacious economic reasoning, historical
perspective, relevant accounting, these have all led to
scienti�c success. Statistical signi�cance has not,”
(p.112).

McCloskey, Dierdre N and Stephen Ziliak, 1996, The Cult of Statistical Signi�cance

Abusing p-Values and “Science”



Common Misconceptions about p-values
❌  is the probability that the alternative hypothesis is false

We can never prove an alternative hypothesis, only tentatively reject a null hypothesis

❌  is the probability that the null hypothesis is true

We're not proving the  is false, only saying that it's very unlikely that if  were true, we'd obtain a slope
as rare as our sample's slope

❌  is the probability that our observed effects were produced purely by random chance

 is computed under a speci�c model (think about our null world) that assumes  is true

❌  tells us how signi�cant our �nding is

 tells us nothing about the size or the real world signi�cance of any effect deemed “statistically signi�cant”
it only tells us that the slope is statistically signi�cantly different from 0 (if  is 

p

p

H0 H0

p

p H0

p

p

H0 = 0)β1



p-value Clari�cation
Again, p-value is the probability that, if the null hypothesis were true, we obtain (by pure
random chance) a test statistic at least as extreme as the one we estimated for our sample

A low p-value means either (and we can't distinguish which):

�.  is true and a highly improbable event has occurred OR
�.  is false

H0
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Test Score

Intercept 698.93 ***

(9.47)   

STR -2.28 ***

(0.48)   

N 420       

R-Squared 0.05    

SER 18.58    

*** p < 0.001; ** p < 0.01; * p < 0.05.

Statistical signi�cance is shown by
asterisks, common (but not always!)
standard:

1 asterisk: signi�cant at 
2 asterisks: signi�cant at 
3 asterisks: signi�cant at 

Rare, but sometimes regression tables
include -values for estimates

Signi�cance In Regression Tables
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