# 3.3 — Omitted Variable Bias ECON 480 • Econometrics • Fall 2021 Ryan Safner Assistant Professor of Economics ✓ safner@hood.edu ♥ ryansafner/metricsF21 ♥ metricsF21.classes.ryansafner.com



# **Review: u**

 $Y_i = \beta_0 + \beta_1 X_i + u_i$ 

- *u<sub>i</sub>* includes all other variables that affect *Y*
- Every regression model always has **omitted variables** assumed in the error
  - Most are unobservable (hence "u")
  - **Examples**: innate ability, weather at the time, etc
- Again, we assume u is random, with E[u|X] = 0 and  $var(u) = \sigma_u^2$
- Sometimes, omission of variables can **bias** OLS estimators  $(\hat{\beta}_0 \text{ and } \hat{\beta}_1)$





# **Omitted Variable Bias I**

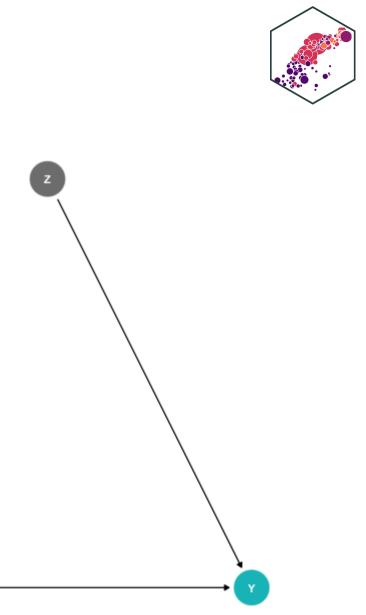
• Omitted variable bias (OVB) for some omitted variable Z exists if two conditions are met:

# **Omitted Variable Bias I**

• Omitted variable bias (OVB) for some omitted variable Z exists if two conditions are met:

1. Z is a determinant of Y

• i.e. Z is in the error term,  $u_i$ 



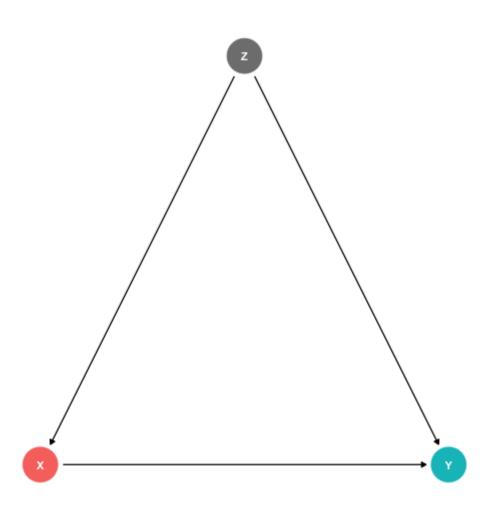
# **Omitted Variable Bias I**

• Omitted variable bias (OVB) for some omitted variable Z exists if two conditions are met:

1. Z is a determinant of Y

- i.e. Z is in the error term,  $u_i$
- 2.  $\boldsymbol{Z}$  is correlated with the regressor  $\boldsymbol{X}$ 
  - i.e.  $cor(X, Z) \neq 0$
  - implies  $cor(X, u) \neq 0$
  - implies X is endogenous





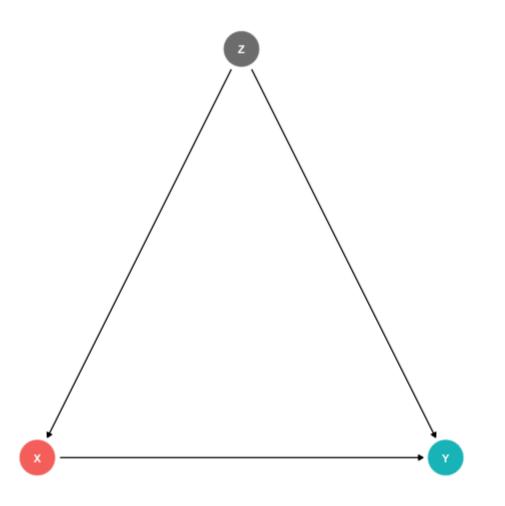
# **Omitted Variable Bias II**

- Omitted variable bias makes X
   endogenous
- Violates zero conditional mean assumption

 $E(u_i|X_i) \neq 0 \implies$ 

 knowing X<sub>i</sub> tells you something about u<sub>i</sub> (i.e. something about Y not by way of X)!





# **Omitted Variable Bias III**

- $\hat{\beta}_1$  is biased:  $E[\hat{\beta}_1] \neq \beta_1$
- $\hat{\beta}_1$  systematically over- or underestimates the true relationship ( $\beta_1$ )
- $\hat{\beta}_1$  "picks up" *both* pathways:
  - $\begin{array}{l} \mathbf{1}. X \to Y \\ \mathbf{2}. X \leftarrow Z \to Y \end{array}$





# **Omited Variable Bias: Class Size Example**

**Example**: Consider our recurring class size and test score example:

Test score<sub>i</sub> = 
$$\beta_0 + \beta_1 STR_i + u_i$$

- Which of the following possible variables would cause a bias if omitted?
- 1.  $Z_i$ : time of day of the test
- 2.  $Z_i$ : parking space per student
- 3.  $Z_i$ : percent of ESL students

# **Recall: Endogeneity and Bias**

• (Recall): the true expected value of  $\hat{\beta_1}$  is actually:<sup>†</sup>

$$E[\hat{\beta}_1] = \beta_1 + cor(X, u) \frac{\sigma_u}{\sigma_X}$$

1) If X is exogenous: cor(X, u) = 0, we're just left with  $\beta_1$ 

2) The larger 
$$cor(X, u)$$
 is, larger bias:  $\left(E[\hat{eta_1}] - eta_1
ight)$ 

3) We can "sign" the direction of the bias based on cor(X, u)

- **Positive** cor(X, u) overestimates the true  $\beta_1$  ( $\hat{\beta}_1$  is too large)
- Negative cor(X, u) underestimates the true  $\beta_1$  ( $\hat{\beta}_1$  is too small)

<sup>†</sup> See <u>2.4 class notes</u> for proof.



# **Endogeneity and Bias: Correlations I**

• Here is where checking correlations between variables helps:

```
# Select only the three variables we want (there are many)
CAcorr <- CASchool %>%
   select("str","testscr","el_pct")
```

```
# Make a correlation table
cor_table <- cor(CAcorr)
cor_table # look at it</pre>
```

| ## |         | str        | testscr    | el_pct     |
|----|---------|------------|------------|------------|
| ## | str     | 1.0000000  | -0.2263628 | 0.1876424  |
| ## | testscr | -0.2263628 | 1.0000000  | -0.6441237 |
| ## | el_pct  | 0.1876424  | -0.6441237 | 1.0000000  |

- el\_pct is strongly (negatively)
   correlated with testscr (Condition 1)
- el\_pct is reasonably (positively)
   correlated with str (Condition 2)



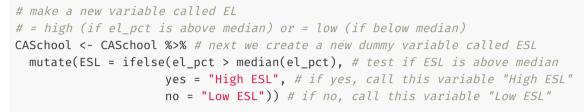
# **Endogeneity and Bias: Correlations II**

• Here is where checking correlations between variables helps:

order="original")



## **Look at Conditional Distributions I**



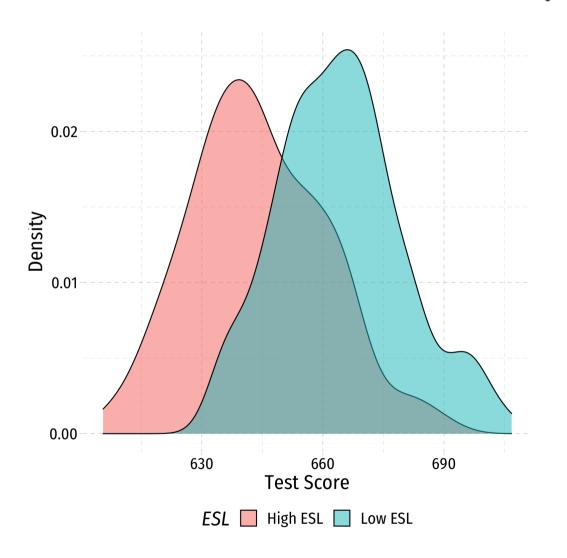
# get average test score by high/low EL
CASchool %>%
group\_by(ESL) %>%
summarize(Average\_test\_score = mean(testscr))

| ESL         | Average_test_score |
|-------------|--------------------|
| <chr></chr> | <dpl></dpl>        |
| High ESL    | 643.9591           |
| Low ESL     | 664.3540           |
| 2 rows      |                    |



## **Look at Conditional Distributions II**

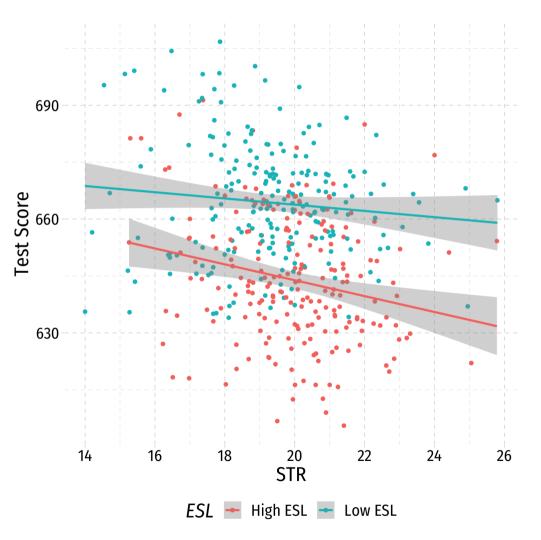
```
ggplot(data = CASchool)+
    aes(x = testscr,
        fill = ESL)+
    geom_density(alpha=0.5)+
    labs(x = "Test Score",
        y = "Density")+
    ggthemes::theme_pander(
        base_family = "Fira Sans Condensed",
        base_size=20
        )+
    theme(legend.position = "bottom")
```



#### **Look at Conditional Distributions III**



```
esl_scatter <- ggplot(data = CASchool)+
  aes(x = str,
        y = testscr,
        color = ESL)+
  geom_point()+
  geom_smooth(method = "lm")+
  labs(x = "STR",
        y = "Test Score")+
  ggthemes::theme_pander(
      base_family = "Fira Sans Condensed",
      base_size=20
      )+
  theme(legend.position = "bottom")
esl_scatter</pre>
```

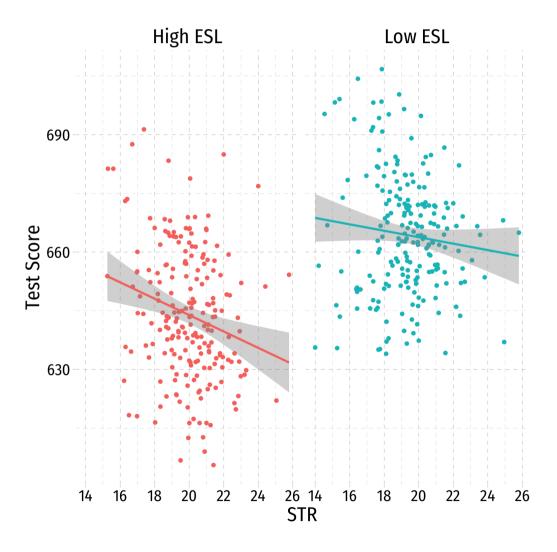


#### **Look at Conditional Distributions III**



esl\_scatter+

facet\_grid(~ESL)+
guides(color = F)



# **Omitted Variable Bias in the Class Size Example**

$$E[\hat{\beta}_1] = \beta_1 + bias$$

$$E[\hat{\beta}_1] = \frac{\beta_1}{\sigma_X} + cor(X, u) \frac{\sigma_u}{\sigma_X}$$

- *cor*(*STR*, *u*) is positive (via %*EL*)
- *cor*(*u*, Test score) is negative (via %*EL*)
- $\beta_1$  is negative (between Test score and STR)
- Bias is positive
  - But since  $\beta_1$  is negative, it's made to be a *larger* negative number than it truly is
  - Implies that  $\beta_1$  overstates the effect of reducing STR on improving Test Scores

# **Omitted Variable Bias: Messing with Causality I**

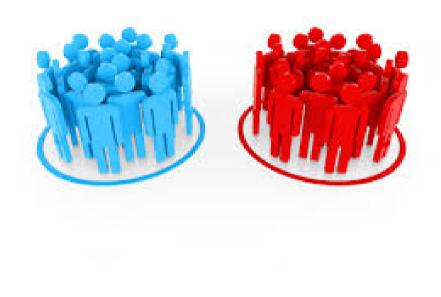


- If school districts with higher Test Scores happen to have both lower STR **AND** districts with smaller STR sizes tend to have less % EL ...
- How can we say  $\hat{\beta}_1$  estimates the marginal effect of  $\Delta STR \rightarrow \Delta Test$  Score?
- (We can't.)

# **Omitted Variable Bias: Messing with Causality II**



- Consider an ideal random controlled trial (RCT)
- Randomly assign experimental units (e.g. people, cities, etc) into two (or more) groups:
  - Treatment group(s): gets a (certain type or level of) treatment
  - **Control group(s)**: gets *no* treatment(s)
- Compare results of two groups to get average treatment effect



# **RCTs Neutralize Omitted Variable Bias I**

**Example**: Imagine an ideal RCT for measuring the effect of STR on Test Score

- School districts would be **randomly assigned** a student-teacher ratio
- With random assignment, all factors in *u* (%ESL students, family size, parental income, years in the district, day of the week of the test, climate, etc) are distributed *independently* of class size



# **RCTs Neutralize Omitted Variable Bias II**

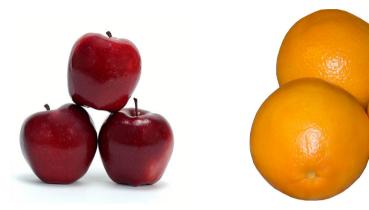
**Example**: Imagine an ideal RCT for measuring the effect of STR on Test Score

- Thus, cor(STR, u) = 0 and E[u|STR] = 0, i.e. exogeneity
- Our  $\hat{\beta}_1$  would be an **unbiased estimate** of  $\beta_1$ , measuring the **true causal effect** of STR  $\rightarrow$  Test Score



# But We Rarely, if Ever, Have RCTs

- But we **didn't** run an RCT, it's observational data!
- "Treatment" of having a large or small class size is **NOT** randomly assigned!
- %*EL*: plausibly fits criteria of O.V. bias!
  - %*EL* is a determinant of Test Score
     %*EL* is correlated with STR
- Thus, "control" group and "treatment" group differ systematically!
  - Small STR also tend to have lower %*EL*; large STR also tend to have higher %*EL*
  - Selection bias:  $cor(STR, \% EL) \neq 0$ ,  $E[u_i | STR_i] \neq 0$

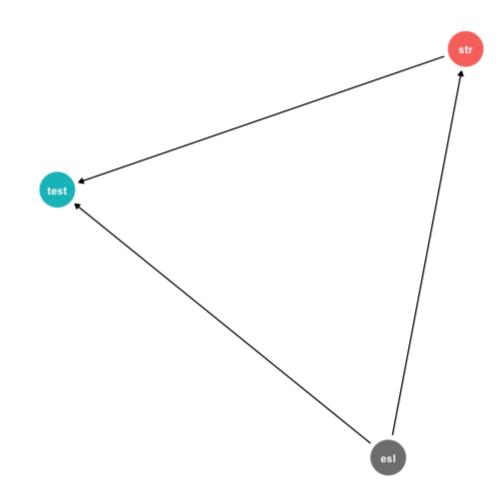


**Treatment Group** 

**Control Group** 

#### **Another Way to Control for Variables**

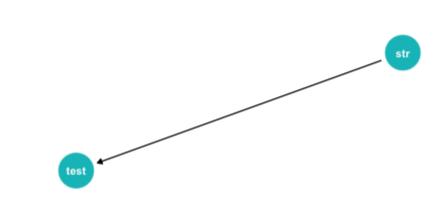
- Pathways connecting str and test score:
  - 1. str  $\rightarrow$  test score
  - 2. str  $\leftarrow$  ESL  $\rightarrow$  testscore



#### **Another Way to Control for Variables**

- Pathways connecting str and test score:
  - 1. str  $\rightarrow$  test score 2. str  $\leftarrow$  ESL  $\rightarrow$  testscore
- DAG rules tell us we need to control for
   ESL in order to identify the causal effect
   of str → test score
- So now, how *do* we control for a variable?





{esl}

# **Controlling for Variables**

- Look at effect of STR on Test Score by comparing districts with the **same** %EL
  - Eliminates differences in %EL
     between high and low STR classes
  - "As if" we had a control group! Hold
     %EL constant
- The simple fix is just to **not omit %EL**!
  - Make it *another* independent variable
     on the righthand side of the
     regression





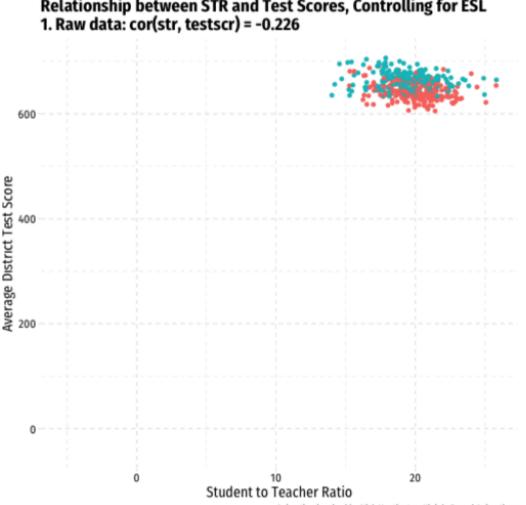
**Treatment Group** 

**Control Group** 



# **Controlling for Variables**

- Look at effect of STR on Test Score by comparing districts with the **same** %EL
  - Eliminates differences in %EL between high and low STR classes
  - "As if" we had a control group! Hold %EL constant
- The simple fix is just to **not omit %EL**!
  - Make it *another* independent variable on the righthand side of the regression



**Relationship between STR and Test Scores, Controlling for ESL** 



Animation inspired by Nick Huntington-Klein's Causal Animations



# The Multivariate Regression Model

# **Multivariate Econometric Models Overview**



 $Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \dots + \beta_{k}X_{ki} + u_{i}$ 

- *Y* is the **dependent variable** of interest
  - AKA "response variable," "regressand," "Left-hand side (LHS) variable"
- $X_1$  and  $X_2$  are **independent variables** 
  - AKA "explanatory variables", "regressors," "Right-hand side (RHS) variables", "covariates"
- Our data consists of a spreadsheet of observed values of  $(X_{1i}, X_{2i}, Y_i)$
- To model, we "regress Y on  $X_1$  and  $X_2$ "
- β<sub>0</sub>, β<sub>1</sub>, ..., β<sub>k</sub> are parameters that describe the population relationships between the variables
   We estimate k + 1 parameters ("betas")<sup>†</sup>

<sup>†</sup> Note Bailey defines k to include both the number of variables plus the constant.



$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$

• Consider changing  $X_1$  by  $\Delta X_1$  while holding  $X_2$  constant:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$
 Before the change



$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$

• Consider changing  $X_1$  by  $\Delta X_1$  while holding  $X_2$  constant:

 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$  Before the change  $Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2$  After the change



$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$

• Consider changing  $X_1$  by  $\Delta X_1$  while holding  $X_2$  constant:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$
$$Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2$$
$$\Delta Y = \beta_1 \Delta X_1$$

Before the change After the change The difference



$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i}$$

• Consider changing  $X_1$  by  $\Delta X_1$  while holding  $X_2$  constant:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$
  

$$Y + \Delta Y = \beta_0 + \beta_1 (X_1 + \Delta X_1) + \beta_2 X_2$$
  

$$\Delta Y = \beta_1 \Delta X_1$$
  

$$\frac{\Delta Y}{\Delta X_1} = \beta_1$$
  
Solution

Before the change After the change The difference Solving for  $\beta_1$ 



$$\beta_1 = \frac{\Delta Y}{\Delta X_1}$$
 holding  $X_2$  constant

Similarly, for  $\beta_2$ :

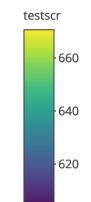
$$\beta_2 = \frac{\Delta Y}{\Delta X_2}$$
 holding  $X_1$  constant

And for the constant,  $\beta_0$ :

$$\beta_0$$
 = predicted value of Y when  $X_1 = 0$ ,  $X_2 = 0$ 

# You Can Keep Your Intuitions...But They're Wrong Now

- We have been envisioning OLS regressions as the equation of a line through a scatterplot of data on two variables, X and Y
  - $\beta_0$ : "intercept" •  $\beta_1$ : "slope"
- With 3+ variables, OLS regression is no longer a "line" for us to estimate...



#### The "Constant"

• Alternatively, we can write the population regression equation as:

$$Y_i = \beta_0 X_{0i} + \beta_1 X_{1i} + \beta_2 X_{2i} + u_i$$

- Here, we added  $X_{0i}$  to  $eta_0$
- $X_{0i}$  is a **constant regressor**, as we define  $X_{0i} = 1$  for all *i* observations
- Likewise,  $\beta_0$  is more generally called the "constant" term in the regression (instead of the "intercept")
- This may seem silly and trivial, but this will be useful next class!



# The Population Regression Model: Example I



#### **Example**:

Beer Consumption<sub>i</sub> =  $\beta_0 + \beta_1 Price_i + \beta_2 Income_i + \beta_3 Nachos Price_i + \beta_4 Wine Price$ 

- Let's see what you remember from micro(econ)!
- What measures the **price effect**? What sign should it have?
- What measures the **income effect**? What sign should it have? What should inferior or normal (necessities & luxury) goods look like?
- What measures the **cross-price effect(s)**? What sign should substitutes and complements have?

# The Population Regression Model: Example I



#### **Example**:

Beer Consumption<sub>i</sub> =  $20 - 1.5Price_i + 1.25Income_i - 0.75Nachos Price_i + 1.3Wine$ 

• Interpret each  $\hat{eta}$ 

# **Multivariate OLS in R**



• Format for regression is

 $lm(y \sim x1 + x2, data = df)$ 

- y is dependent variable (listed first!)
- ~ means "is modeled by" or "is explained by"
- x1 and x2 are the independent variable
- df is the dataframe where the data is stored

# **Multivariate OLS in R II**

# look at reg object
school\_reg\_2

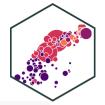
```
    Stored as an lm object called school_reg_2, a
    list object
```

```
##
## Call:
## Call:
## lm(formula = testscr ~ str + el_pct, data = CASchool)
##
## Coefficients:
## (Intercept) str el_pct
## 686.0322 -1.1013 -0.6498
```

#### **Multivariate OLS in R III**

summary(school\_reg\_2) # get full summary

```
##
## Call:
## lm(formula = testscr ~ str + el pct, data = CASchool)
##
## Residuals:
##
      Min
              1Q Median
                             3Q
                                    Max
## -48.845 -10.240 -0.308 9.815 43.461
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 686.03225 7.41131 92.566 < 2e-16 ***
       -1.10130 0.38028 -2.896 0.00398 **
## str
## el_pct -0.64978 0.03934 -16.516 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.46 on 417 degrees of freedom
## Multiple R-squared: 0.4264, Adjusted R-squared: 0.4237
## F-statistic: 155 on 2 and 417 DF, p-value: < 2.2e-16
```



# **Multivariate OLS in R IV: broom**





# load packages
library(broom)

# tidy regression output
tidy(school\_reg\_2)

| term        | estimate    | std.error   | statistic   | p.value       |
|-------------|-------------|-------------|-------------|---------------|
| <chr></chr> | <qpf></qpf> | <qpf></qpf> | <qpf></qpf> | <qpf></qpf>   |
| (Intercept) | 686.0322487 | 7.41131248  | 92.565554   | 3.871501e-280 |
| str         | -1.1012959  | 0.38027832  | -2.896026   | 3.978056e-03  |
| el_pct      | -0.6497768  | 0.03934255  | -16.515879  | 1.657506e-47  |
| 3 rows      |             |             |             |               |

# **Multivariate Regression Output Table**

```
library(huxtable)
huxreg("Model 1" = school_reg,
    "Model 2" = school_reg_2,
    coefs = c("Intercept" = "(Intercept)",
        "Class Size" = "str",
        "%ESL Students" = "el_pct"),
    statistics = c("N" = "nobs",
        "R-Squared" = "r.squared",
        "SER" = "sigma"),
    number_format = 2)
```

|               | Model 1    | Model 2    |
|---------------|------------|------------|
| Intercept     | 698.93 *** | 686.03 *** |
|               | (9.47)     | (7.41)     |
| Class Size    | -2.28 ***  | -1.10 **   |
|               | (0.48)     | (0.38)     |
| %ESL Students |            | -0.65 ***  |
|               |            | (0.04)     |
| Ν             | 420        | 420        |
| R-Squared     | 0.05       | 0.43       |
| SER           | 18.58      | 14.46      |
|               | I          |            |

\*\*\* p < 0.001; \*\* p < 0.01; \* p < 0.05.

