
Writing & Reading Empirical Papers

ECON 480 • Econometrics • Fall 2021

Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- <u>ryansafner/metricsF21</u>
- metricsF21.classes.ryansafner.com

Your Research Question

• A good paper has a *specific* **research question** that you will ask and provide evidence towards a *clear*, *quantifiable* answer. Good research questions are:

1. A claim about something

- Capital punishment is the most efficient deterrent for violent crimes.
- Women are paid, on average, 33% less than men performing the same work.
- 2. **As specific as possible**, given the length constraints
 - Do candidates that spend more money than their opponents tend to win Congressional races?
- 3. **Testable**, with data that can provide *some* evidence one way or another
 - One study will never be "the" definitive proof of something, only suggestive evidence

Structure of an Empirical Paper

- 1. Introduction
- 2. Literature Review
- 3. Theory/Model
- 4. Data Description
- 5. Empirical Model
- 6. Results/Implications
- 7. Bibliography

Introduction

- Get to your research question ASAP! Make it the first sentence even.
- Hook your reader
 - Who cares? Why is this important? Why is this relevant? How does this affect people?
 - Statistics and background information can often help

Example: As a student writing an empirical research paper, does writing a longer paper earn a higher grade on the assignment?

Introduction II

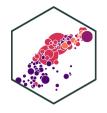
- State your research question clearly and quickly
- Do NOT write a "blog post" about how you became interested in the question, or all the work (and dead-ends) that led you on the journey to reaching your final answer
 - Nobody cares about the labor pains, they just want to see the baby!
- Provide an outline of the rest of the paper:
 - Why your question matters
 - How you answer the question in this paper
 - What your identification strategy is and what models you use
 - What data you use
 - What your most important results are

Introduction III

Example: I estimate the relationship between paper length and grades by using a simple OLS regression using sample data collected from previous classes. I find that there is a weak positive effect, that students who write longer papers earn higher grades. On average, for every additional page written, grades improve by less than a point. These results are robust to a number of different model specifications and controls.

Introduction IV

- Most people do not write enough in their introductions
- Consider the incentives of a (skimming) reader pressed for time
 - If someone only skims your intro, what do you want them to know??
- My rough suggestion: make your introduction about 15-20% of your paper:


Paper Length	Intro Length
5 pages	1-1.5 pages
10 pages	2-2.5 pages
30 pages	5 pages

Literature Review

- **Literature Review** can be summarized into the introduction or given its' own section (debatable)
- No work is totally original. It's okay!
 - What have other relevant researchers written and discovered about your topic?
 - What data and models did they use? What did they find?
 - How does your paper connect and stand apart from what's been done?
 - Does your paper use different data? A different model? Different controls?

Theory

- This is an *economics* course, so you must describe some **economic theory** behind the question you are asking and answering
- Most scholarly papers have a formal economic model, which then generates predictions that they test for with data
- You do not need a theoretical model, but you do need to discuss economic principles or concepts that are relevant
 - Often there may be multiple theories that might conflict, or our expectations might not be clear (these are the best papers!)
 - There may be a significant tradeoff between competing goals, values, or expectations

Theory II

Example: Students that write longer papers likely place higher value on their work and dedicate more resources towards improving its quality, resulting in higher grades.

However, some students may hope or believe that longer papers automatically lead to higher grades, and thus will merely put extra low quality filler in their paper to inflate the length. These papers turn out to be much worse quality, and these students likely earn *lower* grades as a result.

Data

- Describe your data sources
 - Who collected or compiled the data and how?
 - e.g. government agencies, businesses, nonprofits, social surveys, etc.
 - If you collected your own data (unlikely), what was your procedure?

Data II

- Describe the data itself
 - What are your variables? What—specifically, and in English—does each measure?
 - How many observations do you have?
 - If you transformed your variables—how and why?
 - e.g. recoded into categories or dummies
 - e.g. took logs or rescaled units

Data III

- Show your data! Show us basic summary statistics and any patterns
 - Use your judgment: we don't want or need to see everything
 - What do you think is *interesting* or *important*?
 - Plots > Tables > Words > Nothing
- Good ideas to *always* have:
 - 1. A table(s) of all variables used and their description
 - 2. A table(s) of summary statistics of variables
 - 3. A table of correlations of key variables (optional)
 - 4. Plots of (only) *the most important* variables & relationships (histograms, boxplots, scatterplots, etc)

Data: Variables

Variable	Description		
Grade	Grade on paper assignment (0-100)		
Pages	Number of pages written		
Final	Final course grade for student		
Gender	Gender of student		
Class	Class in which paper was assigned		
School	School of class taught		
Year	Year of class		
Time	Time of day class met		
Covid	Course during Covid?		

I collected data at the individual student level from all paper assignments that I have given over the 2013—2021 period at the 3 colleges I have taught at.

Data: Correlations

.;
;

Variable	Description
Grade	Grade on paper assignment (0-100)
Pages	Number of pages written
Final	Final course grade for student
Gender	Gender of student
Class	Course in which paper was assigned
School	College of course taught
Year	Year of class
Time	Time of day course met (Morning/Afternoon)
Covid	Course during Covid?

	Pages	Grade	Final	Year	Covid	Female	Morning	Роон	Econometrics	4
Pages	1.00	0.49	0.37	0.11	0.21	-0.01	0.13	0.12	0.34	1 0.8
	Grade	1.00	0.49	0.36	0.13	-0.12	-0.24	0.42	0.17	- 0.6
		Final	1.00	0.27	0.19	0.05	-0.22	0.24	0.05	- 0.4
		,	Year	1.00	0.59	-0.17	-0.68	0.79	0.24	- 0.2
				Covid	1.00	0.13	-0.31	0.23	-0.05	- 0
				F	emale	1.00	0.10	-0.35	-0.15	0.2
					N	lorning	1.00	-0.45	0.30	0.4
							Hood	1.00	0.39	0.6
							Econor	netrics	1.00	0.8

Data: Summary Statistics of Quantitative Variables

Variable	Obs	Min	Q1	Median	Q3	Max	Mean	Std. Dev.
Covid	197	0.0	0	0.00	0	1.00	0.13	0.33
Econometrics	197	0.0	0	0.00	1	1.00	0.30	0.46
Female	197	0.0	0	0.00	1	1.00	0.40	0.49
Final	197	8.5	83	87.35	94	109.09	86.74	11.34
Grade	197	0.0	84	87.00	92	100.00	85.86	12.67
Hood	197	0.0	0	1.00	1	1.00	0.74	0.44
Morning	197	0.0	0	1.00	1	1.00	0.63	0.48
Pages	197	0.0	7	9.00	12	24.00	9.95	4.17
Year	197	2014.0	2014	2017.00	2019	2020.00	2016.80	2.09

Data: Counts of Categorical Variables I

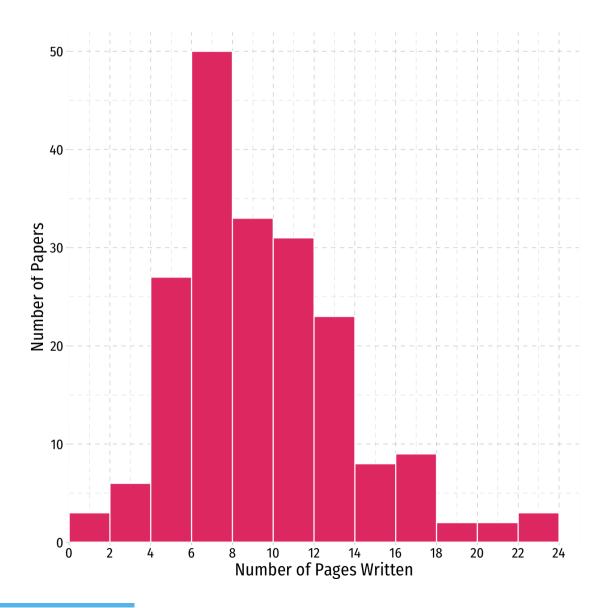
Year	n
2014	51
2016	38
2017	39
2018	13
2019	30
2020	26

Sex	n
Female	78
Male	119

Time	n
Afternoon	72
Morning	125

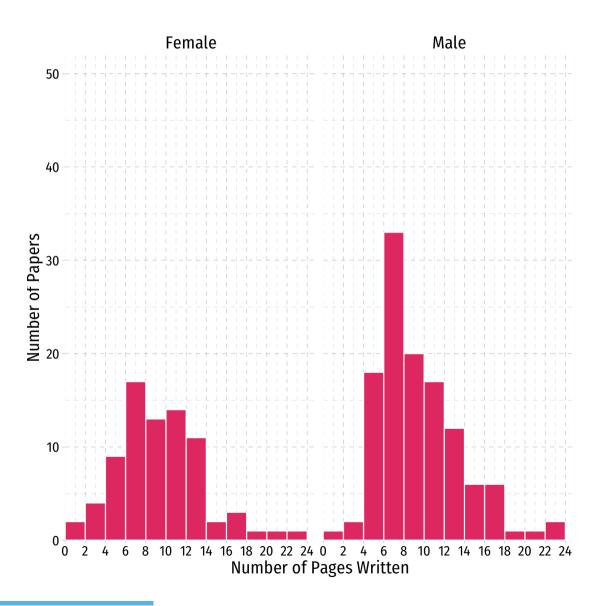
Class	n
Econometrics	60
Game Theory	21
HET	11
IEP	51
Ю	22
Public Economics	9
Trade	23

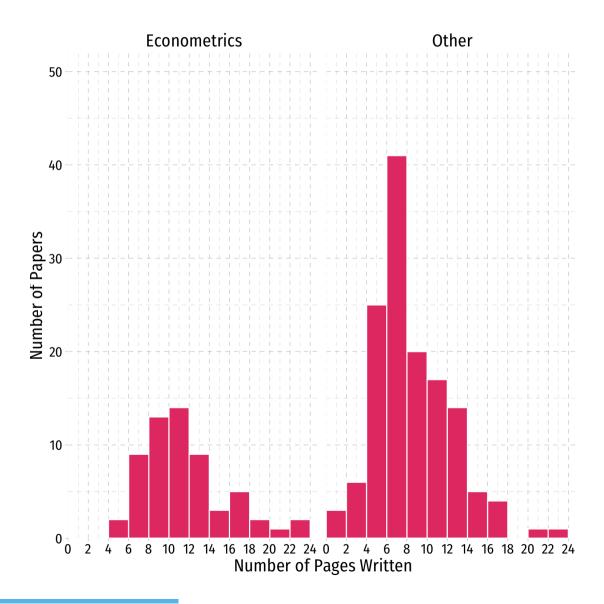
Data: Counts of Categorical Variables II

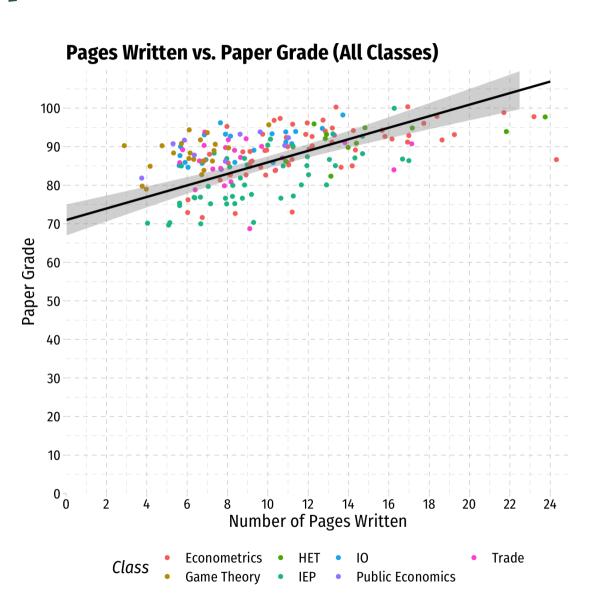


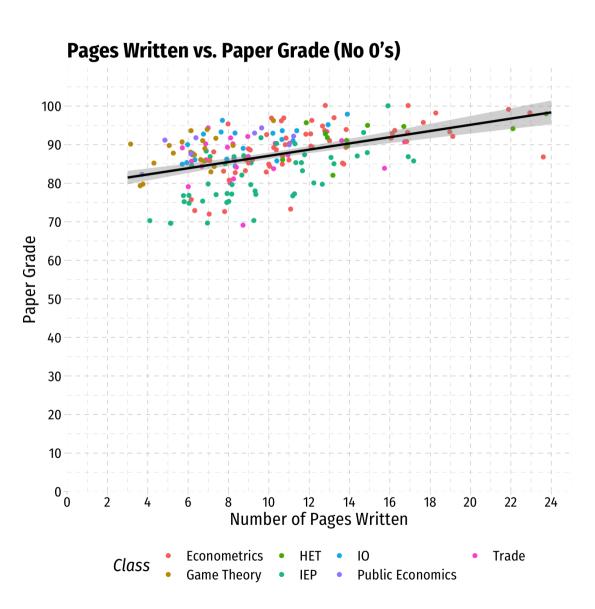
School	n
GMU	51
Hood	146

Covid	n		
0	172		
1	25		

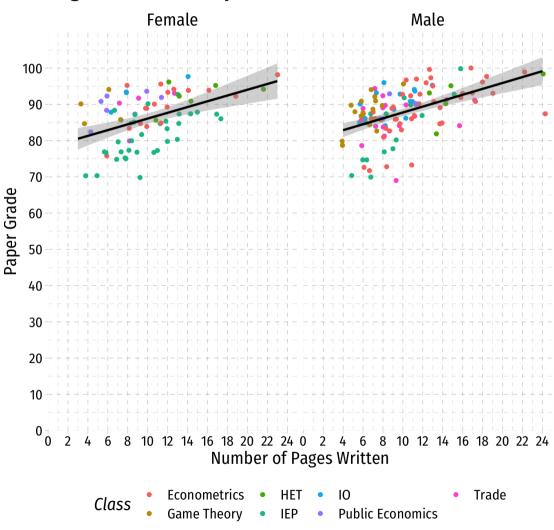

Data: Histogram I


Data: Histogram II

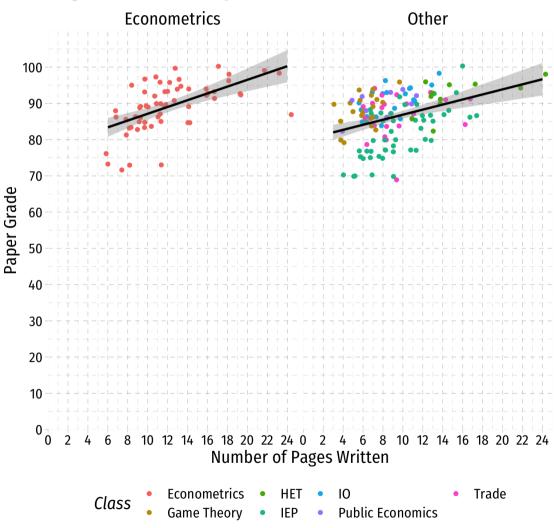

Data: Scatterplot I


Data: Scatterplot II

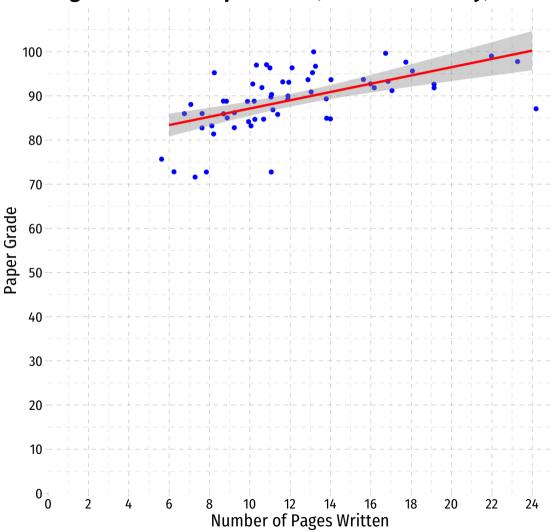
Data: Scatterplot III



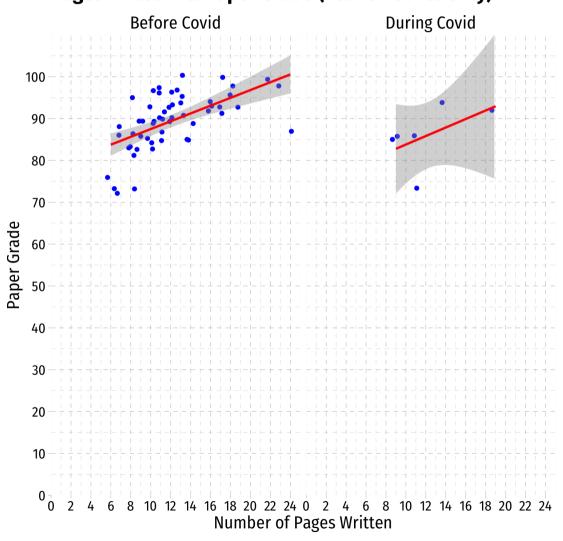
Data: Scatterplot IV



Data: Scatterplot V



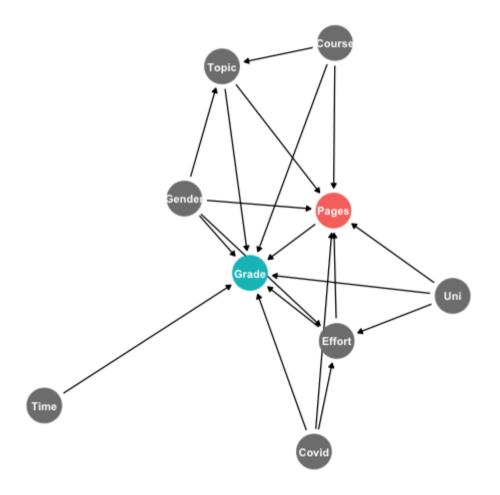
Data: Scatterplot VI



Data: Scatterplot VII

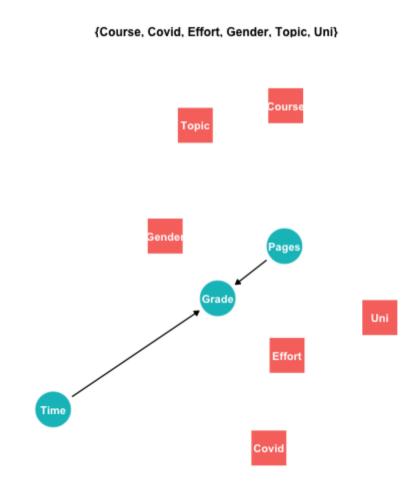
Pages Written vs. Paper Grade (Econometrics Only)

Empirical Model I



- Describe your empirical model and your **identification strategy**
 - for most of you, just OLS and trying to include as many controls to remove omitted variable bias
- Why did you pick certain variables?
- How do you battle endogeneity?
- Hypothesize your expected size and magnitude of key variables
 - Give some **economic intution** behind what we would expect!

Empirical Model II


- Grade plausibly caused by length (pages),
 effort, school (uni), gender, course, topic,
 covid, and time (of day)
- Time of day probably unrelated to length...can safely ignore (don't need to control for)
- Don't have good data on topic
- Can't directly measure for the amount of effort you put in, but I can proxy for it with the final grade in the course (strongly correlated with effort)

Empirical Model II

 So I need to control for school, course, effort (proxied by final grade), gender, covid, and (if I had data on it...) topic

Empirical Model III

Example:

Paper Grade_i =
$$\beta_0 + \beta_1$$
Paper Length_i + β_2 Course Grade_i
+ β_3 Gender_i + β_4 School_i + β_5 Covid_i
+ β_6 Course_i + u_i

- *Length* is the most important variable we care about
- Length probably endogenous, correlated with those other Grade-determining factors:
 - Why I included these controls!
- Likely expect *Length* to be positive and small

Empirical Model III

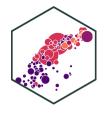
Example:

Paper Grade_i =
$$\beta_0 + \beta_1$$
Paper Length_i + β_2 Course Grade_i
+ β_3 Gender_i + β_4 School_i + β_5 Covid_i
+ β_6 Course_i + u_i

- You are probably interested specifically in the relationship only for econometrics papers, so we can focus Course specifically to a binary variable Metrics to see how the results differ between non-econometrics courses
- Alternatively, we can restrict our sample to *only* past econometrics classes

Empirical Model IV

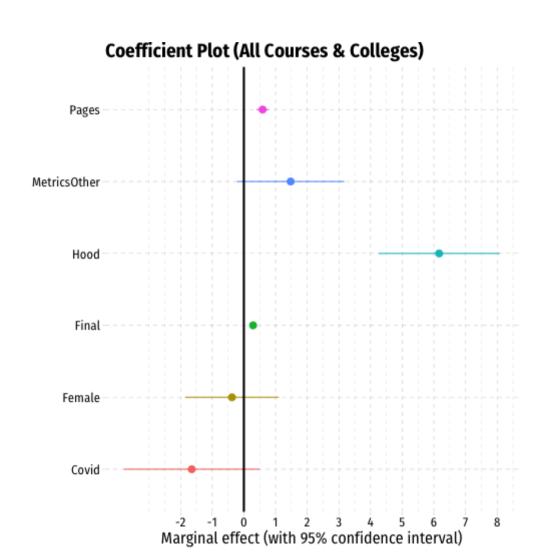
- Describe the limitations of your model
 - Every paper, even Nobel prize-winning ones, have limitations and problems!
 - Limited and/or poor quality data
 - Endogeneity, simultaneous causation, omitted variable bias

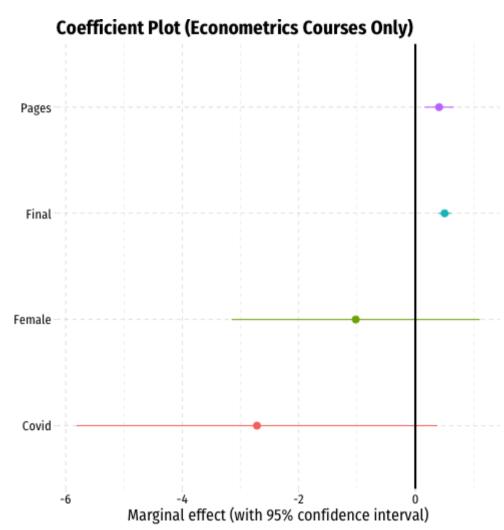

Example: The model likely suffers from endogeneity, as how many pages a student writes is likely to be positively correlated with personal attributes like diligence, conscientiousness, and intelligence, which themselves are likely positively correlated with the grade of the paper. Thus, we have likely *over*stated the effect of page length on paper grades. Furthermore, we are unable to measure other variables that make page length endogenous, such as the topic that was chosen. Some topics lend themselves to shorter or longer papers and may have better or worse data that make it easier or difficult to run a clean empirical test.

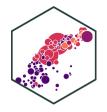
Empirical Model IV

- Are your results robust across different model specifications?
 - Do the size(s) of the marginal effect(s) you care about change or reverse direction?
 Become/lose significance?
- At minimum, you must run several models, including a multivariate regression
 - \circ Run **several variations** of your model with and without controls (e.g. just Y and X, Y and X_1 and X_2 , etc.)
 - Check for nonlinearities: polynomials, logs, etc.

Results I


- Print a table(s) of your regression(s) results
 - R packages can help: huxtable, stargazer, modelsummary
- Interpret your data (in the text of the paper)
 - \circ What does a marginal (1 unit) change in X mean for Y, a 1% change, etc?
 - Is each coefficient statistically significant (at 10%, 5%, or 1% levels)?


	Baseline	No Os	Econometrics Only	With Controls	Hood Only	Econometrics Only
Constant	70.97 ***	79.05 ***	77.77 ***	50.57 ***	43.83 ***	40.66 ***
	(2.04)	(1.18)	(2.26)	(3.08)	(3.40)	(4.29)
Length	1.50 ***	0.81 ***	0.94 ***	0.59 ***	0.33 ***	0.41 **
	(0.19)	(0.11)	(0.18)	(0.10)	(0.09)	(0.13)
Course Grade				0.29 ***	0.47 ***	0.50 ***
				(0.04)	(0.04)	(0.05)
Hood College				6.17 ***		
				(0.97)		
Female				-0.38	-0.28	-1.02
				(0.75)	(0.72)	(1.06)
Econometrics Course				1.48	0.42	
				(0.86)	(0.71)	
During Covid?				-1.64	-1.72	-2.72
				(1.08)	(0.89)	(1.54)
N	197	194	60	194	146	60
R-Squared	0.24	0.22	0.33	0.57	0.61	0.75
SER	11.05	6.03	5.61	4.57	3.66	3.53


Results I

Results: Interpretation!

- Are your estimates **economically significant**?
- How big is "big"?

"No economist has achieved scientific success as a result of a statistically significant coefficient. Massed observations, clever common sense, elegant theorems, new policies, sagacious economic reasoning, historical perspective, relevant accounting, these have all led to scientific success. Statistical significance has not." — McCloskey & Ziliak (1996: 112)

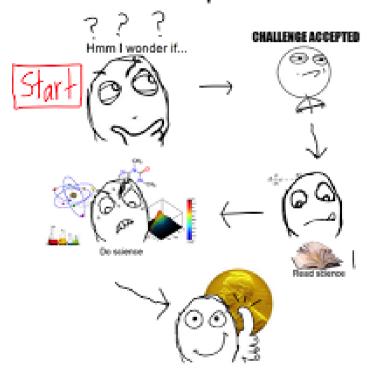
Results: Interpretation!

Results: Interpretation!

Example: I find that for every additional page written, we can expect a paper's grade to increase by about a point or less, after controlling for other factors such as Final grade (proxying as a measure of overall diligence and intelligence), sex, and course. In the most relevant sample, econometrics students, the marginal effect is even smaller, only less than half of a point increase for every additional page written. This small effect is statistically significant at the 10% level only.

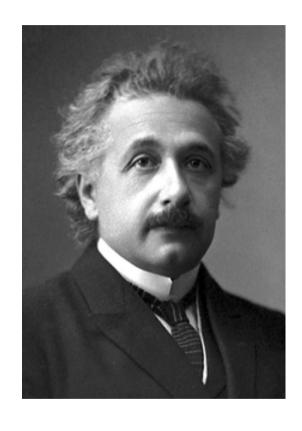
However, we should not make much of these results due to the likely endogeneity of Pages due to unobserved factors such as topic and quality of writing, which clearly would matter much both for length and for grade. *It would be poor advice to recommend students simply to write long papers to earn a higher grade.*

Results: Implications



- Describe several *implications* of your paper
 - Policy implications
 - Proposals for new research
 - Effects on current understanding
 - What else should we try to found out to answer the question better?

Don't Get Discouraged



Public Perception of Science

Don't Get Discouraged

"If we knew what it was we were looking for, we wouldn't call it research, would we?"

Albert Enstein

(1870-1924)

Deadlines and Reminders (From the Assignment Page)

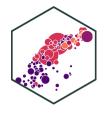
Assignment	Points	Due Date	Description
Abstract	5	Fri Oct 22	Short summary of your ideas
Literature Review	10	Fri Nov 5	1-3 paragraphs on 2-3 scholarly sources
Data Description	10	Fri Nov 19	Description of data sources, and some summary statistics
Presentation	5	Tues/Thurs Nov 30/Dec 2	Short presentation of your project so far
Final Paper Due	70	Mon Dec 6	Email to me paper, data, and code

- note for each stage (except the Final Paper), it's more than okay that your final topics, data, etc will change!
- for the final paper, I will take 1 point off for every 24 hours it is late

Grading of Final Paper (From the Assignment Page)

Category	Points
Persuasiveness	10
Clarity	10
Econometric Validity	20
Economic Soundness	20
Organization	5
References	5
TOTAL	70

Submitting your Final Paper



When you send your final email (by Tuesday November 22), it should contain the following files:

- 1. Your final paper as a .pdf. It should include an abstract and bibliography and all tables and figures.
- 2. **The (commented!) code used for your data analysis** (i.e. loading data, making tables, making plots, running regressions)
 - either .R files OR a .Rmd file. I want to know how you reached the results you got! Reproducibility is the goal!
- 3. Your data used, in whatever original format you found it (e.g. .csv, .xlsx, .dta)

Some Examples

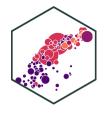
"Exploring the Effects of Children and Marriage on Men's and Women's Incomes"

Income_i =
$$\beta_0 + \beta_1$$
Number of Children_i
+ β_2 Math SAT Score_i + β_3 Sex_i + β_4 Hours Worked per Week_i
+ β_5 Married_i + u_i

Cross-sectional data for individual i

"Does Spending More on the Offensive Line & the Defensive Line Affect NFL Team Wins?"

Wins_{ty} =
$$\beta_0 + \beta_1$$
OL & DL Spending_{ty}
+ β_2 Quarterback Spending_{ty}
+ β_3 Defensive Coach Spending_{ty} + $\alpha_r + \tau_y + \epsilon_{it} + u_{ty}$


• Panel data with two way fixed effects for team t in year y;

"Buy You a Vote"

Vote Share
$$_{it} = \beta_0 + \beta_1 \text{Incumbent}_{it} + \beta_2 \text{Incumbent Spending}_{it} + \beta_3 \text{Non-Incumbent Spending}_{it} + \beta_4 \text{Number of Candidates}_{it} + \beta_5 \text{Political Party}_{it} + \alpha_i + \tau_t + \epsilon_{it}$$

Panel data with two way fixed effects for candidate i at time t

"A Cross-Sectional Study on the Effect of State Minimum Wage on Youth Unemployment at the State Level"

ln(Unemployment Rate)_i =
$$\beta_0 + \beta_1$$
ln(Minimum Wage)_i + β_2 Spending per Student_i
+ β_3 Poverty Rate_i + u_i

Cross-sectional data for U.S. State i

"Is Twitter Strong Enough to Measure NBA Player Performance?"

Player Impact Estimate_i =
$$\beta_0 + \beta_1 \ln(\text{Number of Twitter Followers})_i + \beta_2 \text{Age}_i$$

+ $\beta_3 \text{Games Played}_i + \beta_4 \text{Minutes played per game}_i$
+ $\beta_5 \text{Points scored per game}_i + \beta_6 \text{Salary}_i + u_i$

Cross-sectional data for player i

"The Effect of Economic Growth on Carbon Dioxide Emissions"

$$\ln \text{CO}_{2it} = \beta_0 + \beta_1 \ln \text{GDP per capita}_{it} + \beta_2 \ln \text{GDP per capita}_{it}^2 + \beta_3 \text{Urbanization Rate}_{it} + \alpha_i + \tau_t + u_{it}$$

ullet A nonlinear (quadratic) model with panel data and two-way fixed effects for country i in time t