3.7 — Interaction Effects ECON 480 • Econometrics • Fall 2021 Ryan Safner Assistant Professor of Economics ✓ safner@hood.edu ○ ryansafner/metricsF21 ⓒ metricsF21.classes.ryansafner.com

Outline

Interactions Between a Dummy and Continuous Variable

Interactions Between Two Dummy Variables

Interactions Between Two Continuous Variables

Sliders and Switches

Sliders and Switches

Dummy Continuous Variable Variable

- Marginal effect of dummy variable: effect on Y of going from 0 to 1
- Marginal effect of continuous variable: effect on \boldsymbol{Y} of a 1 unit change in \boldsymbol{X}

Interaction Effects

- Sometimes one X variable might $\mathit{interact}$ with another in determining Y

Example: Consider the gender pay gap again.

- *Gender* affects wages
- Experience affects wages
- Does experience affect wages *differently* by gender?
 - i.e. is there an **interaction effect** between gender and experience?
- Note this is *NOT the same* as just asking: "do men earn more than women *with the same amount of experience*?"

$$\widehat{\text{wages}}_i = \beta_0 + \beta_1 \, Gender_i + \beta_2 \, Experience_i$$

Three Types of Interactions

- Depending on the types of variables, there are 3 possible types of interaction effects
- We will look at each in turn
- 1. Interaction between a **dummy** and a **continuous** variable:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

2. Interaction between a **two dummy** variables:

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i})$$

3. Interaction between a **two continuous** variables:

$$Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i})$$

Interactions Between a Dummy and Continuous Variable

Interactions: A Dummy & Continuous Variable

Dummy Continuous Variable Variable

• Does the marginal effect of the continuous variable on *Y* change depending on whether the dummy is "on" or "off"?

Interactions: A Dummy & Continuous Variable I

- We can model an interaction by introducing a variable that is an **interaction term** capturing the interaction between two variables:

 $Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$ where $D_i = \{0, 1\}$

- β_3 estimates the **interaction effect** between X_i and D_i on Y_i
- What do the different coefficients (β)'s tell us?
 - Again, think logically by examining each group $(D_i = 0 \text{ or } D_i = 1)$

Interaction Effects as Two Regressions I

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 X_i \times D_i$$

• When $D_i = 0$ (Control group):

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\beta}_2(\mathbf{0}) + \hat{\beta}_3 X_i \times (\mathbf{0})$$
$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

• When $D_i = 1$ (Treatment group):

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i} + \hat{\beta}_{2}(1) + \hat{\beta}_{3}X_{i} \times (1)$$
$$\hat{Y}_{i} = (\hat{\beta}_{0} + \hat{\beta}_{2}) + (\hat{\beta}_{1} + \hat{\beta}_{3})X_{i}$$

• So what we really have is *two* regression lines!

Interaction Effects as Two Regressions II

• $D_i = 0$ group:

$$Y_i = \hat{\beta_0} + \hat{\beta_1} X_i$$

• $D_i = 1$ group:

$$Y_{i} = (\hat{\beta_{0}} + \hat{\beta_{2}}) + (\hat{\beta_{1}} + \hat{\beta_{3}})X_{i}$$

Interpretting Coefficients I

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

• To interpret the coefficients, compare cases after changing X by ΔX :

$$Y_i + \Delta Y_i = \beta_0 + \beta_1 (X_i + \Delta X_i) \beta_2 D_i + \beta_3 \left((X_i + \Delta X_i) D_i \right)$$

• Subtracting these two equations, the difference is:

$$\Delta Y_i = \beta_1 \Delta X_i + \beta_3 D_i \Delta X_i$$
$$\frac{\Delta Y_i}{\Delta X_i} = \beta_1 + \beta_3 D_i$$

- The effect of $X \to Y$ depends on the value of D_i !
- β_3 : *increment* to the effect of $X \to Y$ when $D_i = 1$ (vs. $D_i = 0$)

Interpretting Coefficients II

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

- $\hat{\beta}_0: E[Y_i]$ for $X_i = 0$ and $D_i = 0$
- β_1 : Marginal effect of $X_i \to Y_i$ for $D_i = 0$
- β_2 : Marginal effect on Y_i of difference between $D_i = 0$ and $D_i = 1$
- β_3 : The **difference** of the marginal effect of $X_i \to Y_i$ between $D_i = 0$ and $D_i = 1$
- This is a bit awkward, easier to think about the two regression lines:

Interpretting Coefficients III

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 D_i + \beta_3 (X_i \times D_i)$$

For
$$D_i=0$$
 Group: $\hat{Y}_i=\hat{eta_0}+\hat{eta_1}X_i$

- Intercept: $\hat{\beta_0}$
- Slope: $\hat{\beta_1}$

For $D_i = 1$ Group: $\hat{Y}_i = (\hat{\beta}_0 + \hat{\beta}_2) + (\hat{\beta}_1 + \hat{\beta}_3)X_i$

• Intercept:
$$\hat{\beta}_0 + \hat{\beta}_2$$

• Slope: $\hat{\beta}_1 + \hat{\beta}_3$

• $\hat{\beta}_2$: difference in intercept between groups

- $\hat{\beta}_3$: difference in slope between groups
- How can we determine if the two lines have the same slope and/or intercept?
 - Same intercept? *t*-test $H_0: \beta_2 = 0$
 - Same slope? *t*-test $H_0: \beta_3 = 0$

Example I

Example:

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}exper_i + \hat{\beta_2}female_i + \hat{\beta_3}(exper_i \times female_i)$$

• For males (female = 0):

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}exper$$

• For females (female = 1):

$$\widehat{wage_i} = (\widehat{\beta_0} + \widehat{\beta_2}) + (\widehat{\beta_1} + \widehat{\beta_3})exper$$

Example II

- Need to make sure color aesthetic uses a factor variable
 - o Can just use as.factor() in ggplot code

Example II

interaction_plot+
 geom_smooth(method="lm")

Example II

interaction_plot+
 geom_smooth(method="lm")+

facet_wrap(~Gender)

Example Regression in R I

- Syntax for adding an interaction term is easy in R: var1 * var2
 - Or could just do var1 * var2 (multiply)

```
# both are identical in R
interaction_reg <- lm(wage ~ exper * female, data = wages)
interaction_reg <- lm(wage ~ exper + female + exper * female, data = wages)</pre>
```

term	estimate	std.error	statistic	p.value
<chr></chr>	<qpf><qpf><</qpf></qpf>	<qpf></qpf>	<qpf></qpf>	<dpl></dpl>
(Intercept)	6.15827549	0.34167408	18.023830	7.998534e-57
exper	0.05360476	0.01543716	3.472450	5.585255e-04
female	-1.54654677	0.48186030	-3.209534	1.411253e-03
exper:female	-0.05506989	0.02217496	-2.483427	1.332533e-02
4 rows				

Example Regression in R III

```
library(huxtable)
huxreg(interaction_reg,
    coefs = c("Constant" = "(Intercept)",
        "Experience" = "exper",
        "Female" = "female",
        "Experience * Female" = "exper:female"),
    statistics = c("N" = "nobs",
        "R-Squared" = "r.squared",
        "SER" = "sigma"),
    number_format = 2)
```

	(1)
Constant	6.16 ***
	(0.34)
Experience	0.05 ***
	(0.02)
Female	-1.55 **
	(0.48)
Experience * Female	-0.06 *
	(0.02)
Ν	526
R-Squared	0.14
SER	3.44

 $\widehat{wage_i} = 6.16 + 0.05 Experience_i - 1.55 Female_i - 0.06 (Experience_i \times Female_i)$

• $\hat{\beta}_0$: **Men** with 0 years of experience earn 6.16

• $\hat{\beta}_1$:

- $\hat{\beta}_0$: **Men** with 0 years of experience earn 6.16
- $\hat{\beta}_1$: For every additional year of experience, **men** earn \$0.05
- $\hat{\beta}_2$:

- $\hat{\beta}_0$: **Men** with 0 years of experience earn 6.16
- $\hat{\beta}_1$: For every additional year of experience, **men** earn \$0.05
- $\hat{\beta}_2$: Women with 0 years of experience earn \$1.55 less than men
- $\hat{\beta}_3$:

- $\hat{\beta}_0$: **Men** with 0 years of experience earn 6.16
- $\hat{\beta}_1$: For every additional year of experience, **men** earn \$0.05
- $\hat{\beta}_2$: Women with 0 years of experience earn \$1.55 less than men
- $\hat{\beta}_3$: Women earn \$0.06 less than men for every additional year of experience

Interpretting Coefficients as 2 Regressions I

 $\widehat{wage_i} = 6.16 + 0.05 Experience_i - 1.55 Female_i - 0.06 (Experience_i \times Female_i)$

Regression for men (female = 0)

$$\widehat{wage_i} = 6.16 + 0.05 Experience_i$$

- Men with 0 years of experience earn \$6.16 on average
- For every additional year of experience, men earn \$0.05 more on average

Interpretting Coefficients as 2 Regressions II

 $\widehat{wage_i} = 6.16 + 0.05 Experience_i - 1.55 Female_i - 0.06 (Experience_i \times Female_i)$

Regression for women (female = 1)

$$\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55(1) - 0.06 \, Experience_i \times (1) = (6.16 - 1.55) + (0.05 - 0.06) \, Experience_i = 4.61 - 0.01 \, Experience_i$$

- Women with 0 years of experience earn \$4.61 on average
- For every additional year of experience, women earn \$0.01 *less* on average

Example Regression in R: Hypothesis Testing

• Are slopes & intercepts of the 2 regressions statistically significantly different?

##	#	A tibble: 4	× 5			
##		term	estimate	<pre>std.error</pre>	statistic	p.val
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db< td=""></db<>
##	1	(Intercept)	6.16	0.342	18.0	8.00e-
##	2	exper	0.0536	0.0154	3.47	5.59e-
##	3	female	-1.55	0.482	-3.21	1.41e-
##	4	exper:female	-0.0551	0.0222	-2.48	1.33e-

Example Regression in R: Hypothesis Testing

- Are slopes & intercepts of the 2 regressions statistically significantly different?
- Are intercepts different? $H_0: \beta_2 = 0$
 - Difference between men vs. women for no experience?
 - Is $\hat{\beta}_2$ significant?
 - Yes (reject) H_0 : p-value = 0.00

 $\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55 \, Female_i \\ - 0.06 \, (Experience_i \times Female_i)$

A tibble: 4 × 5

##		term	estimate	std.error	statistic	p.val
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db< td=""></db<>
##	1	(Intercept)	6.16	0.342	18.0	8.00e-
##	2	exper	0.0536	0.0154	3.47	5.59e-
##	3	female	-1.55	0.482	-3.21	1.41e-
##	4	<pre>exper:female</pre>	-0.0551	0.0222	-2.48	1.33e-

Example Regression in R: Hypothesis Testing

- Are slopes & intercepts of the 2 regressions statistically significantly different?
- Are intercepts different? $H_0: \beta_2 = 0$
 - Difference between men vs. women for no experience?
 - Is $\hat{\beta}_2$ significant?
 - Yes (reject) H_0 : p-value = 0.00
- Are slopes different? $H_0: \beta_3 = 0$
 - Difference between men vs. women for marginal effect of experience?
 - Is $\hat{\beta}_3$ significant?
 - Yes (reject) H_0 : p-value = 0.01

 $\widehat{wage_i} = 6.16 + 0.05 \, Experience_i - 1.55 \, Female_i \\ - 0.06 \, (Experience_i \times Female_i)$

A tibble: 4 × 5

##		term	estimate	std.error	statistic	p.val
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<db< td=""></db<>
##	1	(Intercept)	6.16	0.342	18.0	8.00e-
##	2	exper	0.0536	0.0154	3.47	5.59e-
##	3	female	-1.55	0.482	-3.21	1.41e-
##	4	<pre>exper:female</pre>	-0.0551	0.0222	-2.48	1.33e-

Interactions Between Two Dummy Variables

Interactions Between Two Dummy Variables

Dummy Dummy Variable Variable

• Does the marginal effect on Y of one dummy going from "off" to "on" change depending on whether the *other* dummy is "off" or "on"?

Interactions Between Two Dummy Variables

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i})$$

- D_{1i} and D_{2i} are dummy variables
- $\hat{\beta}_1$: effect on *Y* of going from $D_{1i} = 0$ to $D_{1i} = 1$ when $D_{2i} = 0$
- $\hat{\beta}_2$: effect on *Y* of going from $D_{2i} = 0$ to $D_{2i} = 1$ when $D_{1i} = 0$
- $\hat{\beta}_3$: effect on Y of going from $D_{1i} = 0$ to $D_{1i} = 1$ when $D_{2i} = 1$

• *increment* to the effect of D_{1i} going from 0 to 1 when $D_{2i} = 1$ (vs. 0)

• As always, best to think logically about possibilities (when each dummy = 0 or = 1)

2 Dummy Interaction: Interpretting Coefficients

$$Y_i = \beta_0 + \beta_1 D_{1i} + \beta_2 D_{2i} + \beta_3 (D_{1i} \times D_{2i})$$

- To interpret coefficients, compare cases:
 - Hold D_{2i} constant (set to some value $D_{2i} = \mathbf{d_2}$)
 - $\circ~$ Plug in 0s or 1s for D_{1i}

$$E(Y_i | D_{1i} = 0, D_{2i} = \mathbf{d_2}) = \beta_0 + \beta_2 \mathbf{d_2}$$

$$E(Y_i | D_{1i} = 1, D_{2i} = \mathbf{d_2}) = \beta_0 + \beta_1 (1) + \beta_2 \mathbf{d_2} + \beta_3 (1) \mathbf{d_2}$$

• Subtracting the two, the difference is:

 $\beta_1 + \beta_3 \mathbf{d_2}$

• The marginal effect of $D_{1i} \rightarrow Y_i$ depends on the value of D_{2i}

 $\circ \hat{\beta}_3$ is the *increment* to the effect of D_1 on Y when D_2 goes from 0 to 1

Interactions Between 2 Dummy Variables: Example

Example: Does the gender pay gap change if a person is married vs. single?

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}female_i + \hat{\beta_2}married_i + \hat{\beta_3}(female_i \times married_i)$$

• Logically, there are 4 possible combinations of $female_i = \{0, 1\}$ and $married_i = \{0, 1\}$

1) Unmarried men ($female_i = 0$, $married_i = 0$)

$$\widehat{wage_i} = \hat{\beta_0}$$

Interactions Between 2 Dummy Variables: Example

Example: Does the gender pay gap change if a person is married vs. single?

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}female_i + \hat{\beta_2}married_i + \hat{\beta_3}(female_i \times married_i)$$

• Logically, there are 4 possible combinations of $female_i = \{0, 1\}$ and $married_i = \{0, 1\}$

1) Unmarried men ($female_i = 0$, $married_i = 0$)

$$\widehat{wage_i} = \hat{\beta_0}$$

3) Unmarried women ($female_i = 1$, $married_i = 0$)

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}$$

2) Married men ($female_i = 0$, $married_i = 1$)

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_2}$$

Interactions Between 2 Dummy Variables: Example

Example: Does the gender pay gap change if a person is married vs. single?

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}female_i + \hat{\beta_2}married_i + \hat{\beta_3}(female_i \times married_i)$$

• Logically, there are 4 possible combinations of $female_i = \{0, 1\}$ and $married_i = \{0, 1\}$

1) Unmarried men ($female_i = 0$, $married_i = 0$)

$$\widehat{wage_i} = \hat{\beta_0}$$

2) Married men ($female_i = 0$, $married_i = 1$)

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_2}$$

3) Unmarried women ($female_i = 1$, $married_i = 0$)

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}$$

4) Married women (
$$female_i = 1$$
, $married_i = 1$)

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1} + \hat{\beta_2} + \hat{\beta_3}$$

Looking at the Data

mean ## 1 5.168023

mean ## 1 7.983032 ## mean ## 1 4.611583

mean ## 1 4.565909

Two Dummies Interaction: Group Means

$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1}female_i + \hat{\beta_2}married_i + \hat{\beta_3}(female_i \times married_i)$

	Men	Women
Unmarried	\$5.17	\$4.61
Married	\$7.98	\$4.57

Interactions Between Two Dummy Variables: In R I

reg_dummies <- lm(wage ~ female + married + female:married, data = wages)
reg_dummies %>% tidy()

A tibble: 4 × 5 estimate std.error statistic p.value ## term <chr> <dbl> <dbl> <dbl> <dbl> ## 14.3 2.26e-39 ## 1 (Intercept) 5.17 0.361 ## 2 female -0.556 0.474 -1.18 2.41e- 1 0.436 6.45 2.53e-10 ## 3 married 2.82 ## 4 female:married -2.86 0.608 -4.71 3.20e- 6

Interactions Between Two Dummy Variables: In R II

library (huxtable)	
huxreg(reg_dummies,	
<pre>coefs = c("Constant" = "(Intercept)",</pre>	
"Female" = "female",	
"Married" = "married",	
"Female * Married" = "female:marri	
<pre>statistics = c("N" = "nobs",</pre>	
"R-Squared" = "r.squared",	
"SER" = "sigma"),	
<pre>number_format = 2)</pre>	

	(1)
Constant	5.17 ***
	(0.36)
Female	-0.56
	(0.47)
Married	2.82 ***
	(0.44)
Female * Married	-2.86 ***
	(0.61)
Ν	526
R-Squared	0.18
SER	3.35

2 Dummies Interaction: Interpretting Coefficients

 $\widehat{wage_i} = 5.17 - 0.56 female_i + 2.82 married_i - 2.86 (female_i \times married_i)$

	Men	Women
Unmarried	\$5.17	\$4.61
Married	\$7.98	\$4.57

• Wage for unmarried men: $\hat{\beta_0} = 5.17$

• Wage for married men:
$$\hat{\beta}_0 + \hat{\beta}_2 = 5.17 + 2.82 = 7.98$$

• Wage for unmarried women: $\hat{\beta}_0 + \hat{\beta}_1 = 5.17 - 0.56 = 4.61$

• Wage for married women: $\hat{\beta_0} + \hat{\beta_1} + \hat{\beta_2} + \hat{\beta_3} = 5.17 - 0.56 + 2.82 - 2.86 = 4.57$

2 Dummies Interaction: Interpretting Coefficients

 $\widehat{wage_i} = 5.17 - 0.56 female_i + 2.82 married_i - 2.86 (female_i \times married_i)$

	Men	Women
Unmarried	\$5.17	\$4.61
Married	\$7.98	\$4.57

• $\hat{\beta}_0$: Wage for unmarried men

- $\hat{\beta}_1$: Difference in wages between men and women who are unmarried
- $\hat{\beta}_2$: Difference in wages between married and unmarried men
- $\hat{\beta}_3$: **Difference** in:
 - effect of **Marriage** on wages between **men** and **women**
 - effect of **Gender** on wages between **unmarried** and **married** individuals

Interactions Between Two Continuous Variables

Interactions Between Two Continuous Variables

Continuous Continuous Variable Variable

• Does the marginal effect of X_1 on Y depend on what X_2 is set to?

Interactions Between Two Continuous Variables

 $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{1i} \times X_{2i})$

• To interpret coefficients, compare changes after changing ΔX_{1i} (holding X_2 constant):

 $Y_i + \Delta Y_i = \beta_0 + \beta_1 (X_1 + \Delta X_{1i}) \beta_2 X_{2i} + \beta_3 ((X_{1i} + \Delta X_{1i}) \times X_{2i})$

• Take the difference to get:

$$\Delta Y_i = \beta_1 \Delta X_{1i} + \beta_3 X_{2i} \Delta X_{1i}$$
$$\frac{\Delta Y_i}{\Delta X_{1i}} = \beta_1 + \beta_3 X_{2i}$$

• The effect of $X_1 \rightarrow Y_i$ depends on X_2

 $\circ \beta_3$: *increment* to the effect of $X_1 \rightarrow Y_i$ for every 1 unit change in X_2

Continuous Variables Interaction: Example

Example: Do education and experience interact in their determination of wages?

$$\widehat{wage_i} = \hat{\beta_0} + \hat{\beta_1} educ_i + \hat{\beta_2} exper_i + \hat{\beta_3} (educ_i \times exper_i)$$

• Estimated effect of education on wages depends on the amount of experience (and vice versa)!

$$\frac{\Delta wage}{\Delta educ} = \hat{\beta}_1 + \beta_3 \ exper_i$$
$$\frac{\Delta wage}{\Delta exper} = \hat{\beta}_2 + \beta_3 \ educ_i$$

• This is a type of nonlinearity (we will examine nonlinearities next lesson)

Continuous Variables Interaction: In R I

reg_cont <- lm(wage ~ educ + exper + educ:exper, data = wages)
reg_cont %>% tidy()

Continuous Variables Interaction: In R II

library (huxtable)	
huxreg(reg_cont,	
coefs = c("Constant" = "(Intercept)",	Constant
"Education" = "educ",	
"Experience" = "exper",	
"Education * Experience" = "educ:exper"),	Education
<pre>statistics = c("N" = "nobs",</pre>	
"R-Squared" = "r.squared",	
"SER" = "sigma"),	
number_format = 3)	Experience

	(1)	
Constant	-2.860 *	
	(1.181)	
Education	0.602 ***	
	(0.090)	
Experience	0.046	
	(0.043)	
Education * Experience	0.002	
	(0.003)	
Ν	526	
R-Squared	0.226	
SER	3.259	
*** p < 0.001; ** p < 0.01; * p < 0.05.		

Continuous Variables Interaction: Marginal Effects

 $\widehat{wages_i} = -2.860 + 0.602 \ educ_i + 0.047 \ exper_i + 0.002 \ (educ_i \times exper_i)$

Marginal Effect of *Education* on Wages by Years of *Experience*:

Experience	$\frac{\Delta wage}{\Delta educ} = \hat{\beta}_1 + \hat{\beta}_3 exper$
5 years	0.602 + 0.002(5) = 0.612
10 years	0.602 + 0.002(10) = 0.622
15 years	0.602 + 0.002(15) = 0.632

• Marginal effect of education \rightarrow wages **increases** with more experience

Continuous Variables Interaction: Marginal Effects

 $\widehat{wages_i} = -2.860 + 0.602 \ educ_i + 0.047 \ exper_i + 0.002 \ (educ_i \times exper_i)$

Marginal Effect of *Experience* on Wages by Years of *Education*:

Education	$\frac{\Delta wage}{\Delta exper} = \hat{\beta}_2 + \hat{\beta}_3 \ educ$
5 years	0.047 + 0.002(5) = 0.057
10 years	0.047 + 0.002(10) = 0.067
15 years	0.047 + 0.002(15) = 0.077

- Marginal effect of experience \rightarrow wages **increases** with more education
- If you want to estimate the marginal effects more precisely, and graph them, see the appendix in <u>today's class page</u>