4.1 — Panel Data and Fixed Effects ECON 480 • Econometrics • Fall 2021 Ryan Safner Assistant Professor of Economics ✓ safner@hood.edu ○ ryansafner/metricsF21 ⓒ metricsF21.classes.ryansafner.com

Outline

Pooled Regression Model

Fixed Effects Model

Least Squares Dummy Variable Approach

De-Meaned Approach

Pooled Regression Model

Types of Data I

• **Cross-sectional data**: compare different individual i's at same time \overline{t}

state	year	deaths	cell_plans
<fct></fct>	<fct></fct>	<qpf></qpf>	<qpf></qpf>
Alabama	2012	13.316056	9433.800
Alaska	2012	12.311976	8872.799
Arizona	2012	13.720419	8810.889
Arkansas	2012	16.466730	10047.027
California	2012	8.756507	9362.424
Colorado	2012	10.092204	9403.225
6 rows			

• **Time-series data**: track same individual \overline{i} over different times t

state	year	deaths	cell_plans
<fct></fct>	<fct></fct>	<qpf></qpf>	<qpf></qpf>
Maryland	2007	10.866679	8942.137
Maryland	2008	10.740963	9290.689
Maryland	2009	9.892754	9339.452
Maryland	2010	8.783883	9630.120
Maryland	2011	8.626745	10335.795
Maryland	2012	8.941916	10393.295
6 rows			

Types of Data I

• **Cross-sectional data**: compare different individual i's at same time \overline{t}

• Time-series data: track same individual \overline{i} over different times t

• **Panel data**: combines these dimensions: compare all individual *i*'s over all time *t*'s

Panel Data I

Panel Data II

state		ye	deaths	cell_plans
<fct></fct>		<fct></fct>	<qpf></qpf>	<dpl></dpl>
Alabama		2007	18.075232	8135.525
Alabama		2008	16.289227	8494.391
Alabama		2009	13.833678	8979.108
Alabama		2010	13.434084	9054.894
Alabama		2011	13.771989	9340.501
Alabama		2012	13.316056	9433.800
Alaska		2007	16.301184	6730.282
Alaska		2008	12.744090	5580.707
Alaska		2009	12.973849	8389.730
Alaska		2010	11.670893	8560.595
1-10 of 306 rows	Previous	1 2	3 4 5	6 31 Next

- Panel or Longitudinal data contains
 - repeated observations (*t*)
 - \circ on multiple individuals (*i*)

Panel Data II

state		ye	deaths	cell_plans
<fct></fct>		<fct></fct>	<qpf></qpf>	<qpf></qpf>
Alabama		2007	18.075232	8135.525
Alabama		2008	16.289227	8494.391
Alabama		2009	13.833678	8979.108
Alabama		2010	13.434084	9054.894
Alabama		2011	13.771989	9340.501
Alabama		2012	13.316056	9433.800
Alaska		2007	16.301184	6730.282
Alaska		2008	12.744090	5580.707
Alaska		2009	12.973849	8389.730
Alaska		2010	11.670893	8560.595
1-10 of 306 rows	Previous	1 2	3 4 5	6 _ 31 Next

- Panel or Longitudinal data contains
 - \circ repeated observations (*t*)
 - \circ on multiple individuals (*i*)
- Thus, our regression equation looks like:

for individual *i* in time *t*.

Panel Data: Our Motivating Example

\frown
\sim

state		ye	deaths	cell_plans
<fct></fct>		<fct></fct>	<qpf></qpf>	<qpf></qpf>
Alabama		2007	18.075232	8135.525
Alabama		2008	16.289227	8494.391
Alabama		2009	13.833678	8979.108
Alabama		2010	13.434084	9054.894
Alabama		2011	13.771989	9340.501
Alabama		2012	13.316056	9433.800
Alaska		2007	16.301184	6730.282
Alaska		2008	12.744090	5580.707
Alaska		2009	12.973849	8389.730
Alaska		2010	11.670893	8560.595
1-10 of 306 rows	Previous	1 2	3 4 5	6 31 Next

Example: Do cell phones cause more traffic fatalities?

- No measure of cell phones *used* while driving
 - cell_plans as a proxy for cell phone usage
- State-level data over 6 years

The Data I

glimpse(phones)

Rows: 306

Columns: 8

\$ year <fct> 2007, 200

The Data II

phones %>%
 count(state)

state								n
<fct></fct>								<int></int>
Alabama								6
Alaska								6
Arizona								6
Arkansas								6
California								6
Colorado								6
Connecticut								6
Delaware								6
District of Columbia								6
Florida								6
1-10 of 51 rows	Previous	1	2	3	4	5	6	Next

phones %>% count(year)

year	n
<fct></fct>	<int></int>
2007	51
2008	51
2009	51
2010	51
2011	51
2012	51
6 rows	

The Data III

phones %>%
 distinct(state)

state							
<fct></fct>							
Alabama							
Alaska							
Arizona							
Arkansas							
California							
Colorado							
Connecticut							
Delaware							
District of Columbia							
Florida							
1-10 of 51 rows	Previous 1	2	3	4	5	6	Next

phones %>%
 distinct(year)

year
<fct></fct>
2007
2008
2009
2010
2011
2012
rows

The Data IV

phones %>%
 summarize(States = n_distinct(state),
 Years = n_distinct(year))

States	Years
<int></int>	<int></int>
51	6
1 row	

Pooled Regression I

• What if we just ran a standard regression:

$$\hat{Y}_{it} = \beta_0 + \beta_1 X_{it} + u_{it}$$

- N number of *i* groups (e.g. U.S. States)
- *T* number of *t* periods (e.g. years)
- This is a **pooled regression model**: treats all observations as independent

Pooled Regression II

pooled <- lm(deaths ~ cell_plans, data = phones)
pooled %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>	<dpf></dpf>	<qpre>ppre></qpre>	<qp[></qp[>	<qp[></qp[>
(Intercept)	17.3371034167	0.975384504	17.774635	5.821724e-49
cell_plans	-0.0005666385	0.000106975	-5.296926	2.264086e-07
2 rows				

Pooled Regression III


```
ggplot(data = phones)+
aes(x = cell_plans,
    y = deaths)+
geom_point()+
labs(x = "Cell Phones Per 10,000 People",
    y = "Deaths Per Billion Miles Driven")+
theme_bw(base_family = "Fira Sans Condensed",
    base_size=14)
```


Pooled Regression III

Recap: Assumptions about Errors

- Recall the **4 critical assumptions** about *u*:
- 1. The expected value of the residuals is 0

E[u] = 0

2. The variance of the residuals over X is constant:

 $var(u|X) = \sigma_u^2$

3. Errors are not correlated across observations:

 $cor(u_i, u_j) = 0 \quad \forall i \neq j$

4. There is no correlation between *X* and the error term:

cor(X, u) = 0 or E[u|X] = 0

Biases of Pooled Regression

$$\hat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \epsilon_{it}$$

- Assumption 3: $cor(u_i, u_j) = 0 \quad \forall i \neq j$
- Pooled regression model is **biased** because it ignores:
 - \circ Multiple observations from same group i
 - \circ Multiple observations from same time t
- Thus, errors are serially or auto-correlated; $cor(u_i, u_j) \neq 0$ within same *i* and within same *t*

Biases of Pooled Regression: Our Example

$$\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{ Cell Phones}_{it} + u_{it}$$

- Multiple observations from same state *i*
 - \circ Probably similarities among u for obs in same state
 - $\circ~\mbox{Residuals}$ on observations from same state are likely correlated
- Multiple observations from same year *t*
 - Probably similarities among *u* for obs in same year
 - $\circ~\mbox{Residuals}$ on observations from same year are likely correlated

Example: Consider Just 5 States

Example: Consider Just 5 States

```
phones %>%
  filter(state %in% c("District of Columbia",
                      "Maryland", "Texas",
                      "California", "Kansas")) %>%
ggplot(data = .)+
 aes(x = cell plans,
     y = deaths,
      color = state)+
 geom_point()+
 geom_smooth(method = "lm")+
  labs(x = "Cell Phones Per 10,000 People",
       y = "Deaths Per Billion Miles Driven",
       color = NULL) +
  theme_bw(base_family = "Fira Sans Condensed",
           base size=14)+
 theme(legend.position = "none")+
 facet_wrap(~state, ncol=3)
```


Look at All States

ggplot(data = phones)+

```
aes(x = cell_plans,
    y = deaths,
    color = state)+
geom_point()+
geom_smooth(method = "lm")+
labs(x = "Cell Phones Per 10,000 People",
    y = "Deaths Per Billion Miles Driven",
    color = NULL)+
theme_bw(base_family = "Fira Sans Condensed")+
theme(legend.position = "none")+
facet_wrap(~state, ncol=7)
```


Cell Phones Per 10,000 People

The Bias in our Pooled Regression

 $\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{ Cell Phones}_{it} + \mathbf{u}_{it}$

• Cell Phones_{*it*} is **endogenous**:

 $cor(u_{it}, \text{Cell Phones}_{it}) \neq 0$ $E[u_{it}|\text{Cell Phones}_{it}] \neq 0$

- Things in *u*_{*it*} correlated with Cell phones_{*it*}:
 - infrastructure spending, population, urban vs. rural, more/less cautious citizens, cultural attitudes towards driving, texting, etc
- A lot of these things vary systematically **by State**!
 - $\circ \textit{ cor}(\mathbf{u}_{it_1},\mathbf{u}_{it_2}) \neq 0$
 - Error in State i during t_1 correlates with error in State i during t_2
 - things in State *i* that don't change over time

Fixed Effects Model

Fixed Effects: DAG

- A simple pooled model likely contains lots of omitted variable bias
- Many (often unobservable) factors that determine both Phones & Deaths
 - Culture, infrastructure, population, geography, institutions, etc

Fixed Effects: DAG

- A simple pooled model likely contains lots of omitted variable bias
- Many (often unobservable) factors that determine both Phones & Deaths
 - Culture, infrastructure, population, geography, institutions, etc
- But the beauty of this is that most of these factors systematically vary by U.S. State and are stable over time!
- We can simply "control for State" to safely remove the influence of all of these factors!

Fixed Effects: Decomposing u_{it}

- Much of the endogeneity in X_{it} can be explained by systematic differences across i (groups)
- Exploit the systematic variation across groups with a **fixed effects model**
- *Decompose* the model error term into two parts:

 $u_{it} = \alpha_i + \epsilon_{it}$

Fixed Effects: α_i

• *Decompose* the model error term into two parts:

 $u_{it} = \alpha_i + \epsilon_{it}$

- α_i are group-specific fixed effects
 - $\circ\,$ group i tends to have higher or lower \hat{Y} than other groups given regressor(s) X_{it}
 - $\circ\,$ estimate a separate $lpha_i$ for each group i
 - essentially, estimate a separate constant (intercept) *for each group*
 - notice this is stable over time within each group (subscript only i, no t)
- This includes all factors that do not change *within* group *i* over time

Fixed Effects: ϵ_{it}

• *Decompose* the model error term into two parts:

 $u_{it} = \alpha_i + \epsilon_{it}$

- ϵ_{it} is the **remaining random error**
 - As usual in OLS, assume the 4 typical assumptions about this error: • $E[\epsilon_{it}] = 0$, $var[\epsilon_{it}] = \sigma_{\epsilon}^2$, $cor(\epsilon_{it}, \epsilon_{jt}) = 0$, $cor(\epsilon_{it}, X_{it}) = 0$
- ϵ_{it} includes all other factors affecting Y_{it} not contained in group effect α_i
 - i.e. differences *within* each group that *change* over time
 - Be careful: X_{it} can still be endogenous due to other factors!
 - $cor(X_{it}, \epsilon_{it}) \neq 0$

Fixed Effects: New Regression Equation

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \epsilon_{it}$$

- We've pulled α_i out of the original error term into the regression
- Essentially we'll estimate an intercept **for each group** (minus one, which is β_0)
 - $\circ~$ avoiding the dummy variable trap
- Must have multiple observations (over time) for each group (i.e. panel data)

Fixed Effects: Our Example

$$\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{Cell phones}_{it} + \alpha_i + \epsilon_{it}$$

- α_i is the **State fixed effect**
 - Captures everything unique about each state *i* that *does not change over time* culture, institutions, history, geography, climate, etc!
- There could *still* be factors in ϵ_{it} that are correlated with Cell phones_{it}!
 - $\circ~$ things that do change over time within States
 - perhaps individual States have cell phone bans for *some* years in our data

Estimating Fixed Effects Models

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \epsilon_{it}$$

- Two methods to estimate fixed effects models:
- 1. Least Squares Dummy Variable (LSDV) approach
- 2. De-meaned data approach

Least Squares Dummy Variable Approach

Least Squares Dummy Variable Approach

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + \beta_2 D_{1i} + \beta_3 D_{2i} + \dots + \beta_N D_{(N-1)i} + \epsilon_{it}$$

• A dummy variable $D_i = \{0, 1\}$ for each possible group

 $\circ = 1$ if observation *it* is from group *i*, otherwise = 0

- If there are $N \ {\rm groups:}$
 - \circ Include N-1 dummies (to avoid **dummy variable trap**) and β_0 is the reference category[†]
 - $\circ~$ So we are estimating a different intercept for each group
- Sounds like a lot of work, automatic in $\ensuremath{\mathsf{R}}$

[†] If we do not estimate β_0 , we could include all N dummies. In either case, β_0 takes the place of one categorydummy.

Least Squares Dummy Variable Approach: Our Example

• Let Alabama be the reference category (β_0), include all other States

Our Example in R I

 $\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{Cell Phones}_{it} + \text{Alaska}_i + \dots + \text{Wyoming}_i$

- If state is a factor variable, just include it in the regression
- R automatically creates N-1 dummy variables and includes them in the regression
 - $\circ~$ Keeps intercept and leaves out first group dummy

Our Example in R II

fe_reg_1 <- lm(deaths ~ cell_plans + state, data = phones) fe_reg_1 %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>	<qpf><</qpf>	<qpf></qpf>	<qpf></qpf>	<qpf></qpf>
(Intercept)	25.507679925	1.0176400289	25.06552337	1.241581e-70
cell_plans	-0.001203742	0.0001013125	-11.88147584	3.483442e-26
stateAlaska	-2.484164783	0.6745076282	-3.68293060	2.816972e-04
stateArizona	-1.510577383	0.6704569688	-2.25305643	2.510925e-02
stateArkansas	3.192662931	0.6664383936	4.79063476	2.829319e-06
stateCalifornia	-4.978668651	0.6655467951	-7.48056889	1.206933e-12
stateColorado	-4.344553493	0.6654735335	-6.52851432	3.588784e-10
stateConnecticut	-6.595185530	0.6654428902	-9.91097152	8.698802e-20
stateDelaware	-2.098393628	0.6666483193	-3.14767707	1.842218e-03
stateDistrict of Columbia	6.355790010	1.2897172620	4.92804911	1.499627e-06
1-10 of 52 rows			Previous 1	2 3 4 5 6 Next

De-meaned Approach

De-meaned Approach I

- Alternatively, we can control our regression for group fixed effects without directly estimating them
- We simply **de-mean the data for each group** to remove the group fixed-effect
- For each group *i*, find the means (over time, *t*):

$$\bar{Y}_i = \beta_0 + \beta_1 \bar{X}_i + \bar{\alpha}_i + \bar{\epsilon}_{it}$$

- Where:
 - $\circ \bar{Y}_i$: average value of Y_{it} for group i
 - $\circ \ ar{X}_i$: average value of X_{it} for group i
 - $\circ \bar{\alpha}_i$: average value of α_i for group $i \ (= \alpha_i)$
 - $\circ \ ar{\epsilon}_{it} = 0$, by assumption 1 about errors

De-meaned Approach II

$$\widehat{Y_{it}} = \beta_0 + \beta_1 X_{it} + u_{it}$$

$$\overline{Y}_i = \beta_0 + \beta_1 \overline{X}_i + \overline{\alpha}_i + \overline{\epsilon}_i$$

• Subtract the means equation from the pooled equation to get:

$$Y_{it} - \bar{Y}_i = \beta_1 (X_{it} - \bar{X}_i) + \tilde{\epsilon}_{it}$$
$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\epsilon}_{it}$$

- Within each group i, the de-meaned variables $ilde{Y}_{it}$ and $ilde{X}_{it}$'s all have a mean of 0^{\dagger}
- Variables that don't change over time will drop out of analysis altogether
- Removes any source of variation <u>across</u> groups (all now have mean of 0) to only work with variation <u>within</u> each group

Recall **Rule 4** from the <u>2.3 class notes</u> on the Summation Operator: $\sum (X_i - \bar{X}) = 0$

De-meaned Approach III

$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\epsilon}_{it}$$

- Yields identical results to dummy variable approach
- More useful when we have many groups (would be many dummies)
- Demonstrates **intuition** behind fixed effects:
 - $\circ~$ Converts all data to deviations from the mean of each group
 - $\circ~$ All groups are "centered" at 0, no variation across groups
 - Fixed effects are often called the **"within" estimators**, they exploit variation *within* groups, not *across* groups

De-meaned Approach IV

- We are basically comparing groups *to themselves* over time
 - apples to apples comparison
 - $\circ~$ e.g. Maryland in 2000 vs. Maryland in 2005
- Ignore all differences *between* groups, only look at differences *within* groups over time

De-Meaning the Data in R I

look at it

means_state

state		avg_deaths	avg_phones
<fct></fct>		<qpf></qpf>	<qpf></qpf>
Alabama		14.786711	8906.370
Alaska		13.612953	7817.759
Arizona		14.249825	8097.482
Arkansas		17.543881	9268.153
California		9.659712	9029.594
Colorado		10.351405	8981.762
Connecticut		8.141739	8947.729
Delaware		12.209610	9304.052
District of Columbia		8.015895	19811.205
Florida	13.544635 9078.592		
1-10 of 51 rows	Previous	1 2 3	4 5 6 Next

De-Meaning the Data in R II

```
ggplot(data = means state)+
  aes(x = fct reorder(state, avg deaths),
      y = avg deaths,
     color = state)+
 geom_point()+
  geom_segment(aes(y = 0,
                   yend = avg_deaths,
                   x = state,
                   xend = state))+
  coord_flip()+
  labs(x = "Cell Phones Per 10,000 People",
       y = "Deaths Per Billion Miles Driven",
       color = NULL) +
  theme_bw(base_family = "Fira Sans Condensed",
           base_size=10)+
  theme(legend.position = "none")
```


Visualizing "Within Group" Estimates for the 5 States

The Relationship between Cell Plans and Deaths, with State Fixed Effects 1. Raw data: cor(cell plans, deaths) = -0.657

Visualizing "Within Group" Estimates for All 51 States

S

The Relationship between Cell Plans and Deaths, with State Fixed Effects 1. Raw data: cor(cell plans, deaths) = -0.291

De-meaned Approach in R I

- The fixest package is designed for running regressions with fixed effects
- feols() function is just like lm(), with some additional arguments:

De-meaned Approach in R II

fe_reg_1_alt %>% summary()

```
## OLS estimation, Dep. Var.: deaths
## Observations: 306
## Fixed-effects: state: 51
## Standard-errors: Clustered (state)
## Estimate Std. Error t value Pr(>|t|)
## cell_plans -0.001204 0.000143 -8.41708 3.792e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 1.05007 Adj. R2: 0.886524
## Within R2: 0.357238
```

```
# or using broom's tidy()
```

fe_reg_1_alt %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>	<qp[></qp[>	<dpl></dpl>	<qp[></qp[>	<qpf></qpf>
cell_plans	-0.001203742	0.0001430118	-8.417077	3.791955e-11
1 row				

- State fixed effect controls for all factors that vary by state but are stable over time
- But there are still other (often unobservable) factors that affect both Phones and Deaths, that *don't* vary by State
 - The country's macroeconomic performance, federal laws, etc

- State fixed effect controls for all factors that vary by state but are stable over time
- But there are still other (often unobservable) factors that affect both Phones and Deaths, that *don't* vary by State
 - The country's macroeconomic performance, federal laws, etc
- If these factors systematically vary over time, but are the same by State, then we can "control for Year" to safely remove the influence of all of these factors!

- A **one-way fixed effects model** estimates a fixed effect for **groups**
- Two-way fixed effects model estimates fixed effects for *both* groups *and* time periods

$$\hat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \theta_t + \nu_{it}$$

- α_i : group fixed effects
 - accounts for time-invariant differences across groups
- θ_t : time fixed effects
 - accounts for **group-invariant differences over time**
- ν_{it} remaining random error

Two-Way Fixed Effects: Our Example

$$\widehat{\text{Deaths}}_{it} = \beta_0 + \beta_1 \text{Cell phones}_{it} + \alpha_i + \theta_t + \nu_{it}$$

- α_i : State fixed effects
 - \circ differences across states that are stable over time (note subscript *i* only)
 - e.g. geography, culture, (unchanging) state laws
- θ_t : Year fixed effects
 - differences **over time** that are **stable across states** (note subscript *t* only)
 - e.g. economy-wide macroeconomic changes, *federal* laws passed

Visualizing Year Effects I

year	avg_deaths	avg_phones
<fct></fct>	<dp[></dp[>	<qpf></qpf>
2007	14.00751	8064.531
2008	12.87156	8482.903
2009	12.08632	8859.706
2010	11.61487	9134.592
2011	11.36431	9485.238
2012	11.65666	9660.474
6 rows		

Visualizing Year Effects II


```
ggplot(data = phones)+
  aes(x = year)
      v = deaths) +
  geom point(aes(color = year))+
  # Add the yearly means as black points
  geom_point(data = means_year,
             aes(x = year)
                 y = avg_deaths),
             size = 3,
             color = "black")+
  # connect the means with a line
  geom_line(data = means_year,
            aes(x = as.numeric(year),
                y = avg_deaths),
            color = "black",
            size = 1)+
  theme_bw(base_family = "Fira Sans Condensed",
           base_size = 14)+
  theme(legend.position = "none")
```


Estimating Two-Way Fixed Effects

$$\widehat{Y}_{it} = \beta_0 + \beta_1 X_{it} + \alpha_i + \theta_t + \nu_{it}$$

• As before, several equivalent ways to estimate two-way fixed effects models:

1) **Least Squares Dummy Variable (LSDV) Approach**: add dummies for both groups and time periods (separate intercepts for groups and times)

2) Fully De-meaned data:

$$\tilde{Y}_{it} = \beta_1 \tilde{X}_{it} + \tilde{\nu}_{it}$$

where for each variable: $v \tilde{a} r_{it} = v a r_{it} - \overline{v a r_t} - \overline{v a r_i}$

3) **Hybrid**: de-mean for one effect (groups or years) and add dummies for the other effect (years or groups)

LSDV Method

<prefeq_reg_1 <- lm(deaths ~ cell_plans + state + year, data = phones)

fe2_reg_1 %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>	<qpf><</qpf>	<dpl></dpl>	<dpl></dpl>	<qpre>ppi<</qpre>
(Intercept)	18.9304707399	1.4511323962	13.0453092	5.427406e-30
cell_plans	-0.0002995294	0.0001723149	-1.7382677	8.339982e-02
stateAlaska	-1.4998292482	0.6241082951	-2.4031554	1.698648e-02
stateArizona	-0.7791714713	0.6113519094	-1.2745057	2.036724e-01
stateArkansas	2.8655344756	0.5985062952	4.7878101	2.895040e-06
stateCalifornia	-5.0900897113	0.5956293282	-8.5457338	1.299236e-15
stateColorado	-4.4127241692	0.5953924847	-7.4114543	1.945083e-12
stateConnecticut	-6.6325834801	0.5952933996	-11.1417051	1.169797e-23
stateDelaware	-2.4579829953	0.5991822226	-4.1022295	5.546475e-05
stateDistrict of Columbia	-3.5044963616	1.9710939218	-1.7779449	7.663326e-02
1-10 of 57 rows			Previous 1 2	3 4 5 6 Next

With fixest

fe2_reg_2 %>% summary()

OLS estimation, Dep. Var.: deaths
Observations: 306
Fixed-effects: state: 51, year: 6
Standard-errors: Clustered (state)
Estimate Std. Error t value Pr(>|t|)
cell_plans -3e-04 0.000305 -0.980739 0.33144
--## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
RMSE: 0.930036 Adj. R2: 0.909197
Within R2: 0.011989

fe2_reg_2 %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>	<qpf></qpf>	<qpf></qpf>	<qpf></qpf>	<dpl></dpl>
cell_plans	-0.0002995294	0.0003054118	-0.9807394	0.3314431
1 row				

Adding Covariates

- State fixed effect absorbs all unobserved factors that vary by state, but are constant over time
- Year fixed effect absorbs all unobserved factors that vary by year, but are constant over States
- But there are still other (often unobservable) factors that affect both Phones and Deaths, that *vary* by State *and* change over time!
 - Some States change their laws during the time period
 - State *urbanization* rates *change* over the time period
- We will also need to **control for these variables** (*not* picked up by fixed effects!)
 - $\circ~$ Add them to the regression

Adding Covariates I

 $\widehat{\text{Deaths}}_{it} = \beta_1 \text{Cell Phones}_{it} + \alpha_i + \theta_t + \text{urban pct}_{it} + \text{cell ban}_{it} + \text{text ban}_{it}$

- Can still add covariates to remove endogeneity not soaked up by fixed effects
 - $\circ~$ factors that change within groups over time
 - e.g. some states pass bans over the time period in data (some years before, some years after)

Adding Covariates II

fe2_controls_reg %>% summary()

OLS estimation, Dep. Var.: deaths ## Observations: 306 ## Fixed-effects: state: 51, year: 6 ## Standard-errors: Clustered (state) Estimate Std. Error t value Pr(>|t|) ## ## cell plans -0.000340 0.000277 -1.22780 0.225269 ## text ban1 0.255926 0.243444 1.05127 0.298188 ## urban percent 0.013135 0.009815 1.33822 0.186878 -0.679796 0.335655 -2.02528 0.048194 * ## cell ban1 ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## RMSE: 0.920123 Adj. R2: 0.910039 Within R2: 0.032939

fe2_controls_reg %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>	<qpf></qpf>	<qpf><qpf><</qpf></qpf>	<dpl></dpl>	<qpre>pp></qpre>
cell_plans	-0.0003403735	0.0002772212	-1.227805	0.22526919
text_ban1	0.2559261569	0.2434442111	1.051272	0.29818803
urban_percent	0.0131347657	0.0098150705	1.338224	0.18687751
cell_ban1	-0.6797956522	0.3356553662	-2.025279	0.04819377

Comparing Models

	Pooled	State Effects	State & Year Effects	With Controls
Intercept	17.3371 ***	25.5077 ***	18.9305 ***	
	(0.9754)	(1.0176)	(1.4511)	
Cell phones	-0.0006 ***	-0.0012 ***	-0.0003	-0.0003
	(0.0001)	(0.0001)	(0.0002)	(0.0003)
Cell Ban				-0.6798 *
				(0.3357)
Texting Ban				0.2559
				(0.2434)
Urbanization Rate				0.0131
				(0.0098)
Ν	306	306	306	306
R-Squared	0.0845	0.9055	0.9259	0.9274
SER	3.2791	1.1526	1.0310	1.0262